Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1992 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Identification of the fourth member of the mammalian endoprotease family homologous to the yeast Kex2 protease. Its testis-specific expression.

Authors: K, Nakayama; W S, Kim; S, Torii; M, Hosaka; T, Nakagawa; J, Ikemizu; T, Baba; +1 Authors

Identification of the fourth member of the mammalian endoprotease family homologous to the yeast Kex2 protease. Its testis-specific expression.

Abstract

We used the polymerase chain reaction to identify a mouse testis cDNA that represented another member of a growing class of mammalian endoproteases involved in the processing of precursor proteins. This cDNA encoded a 655-residue protein, designated PC4, containing a bacterial subtilisin-like catalytic domain closely related to those of the recently characterized precursor-processing endoproteases, furin, PC1/PC3, PC2, and Kex2. Within this domain, the amino acid sequence of PC4 was 70, 58, 55, and 45% identical with those of mouse furin, mouse PC1/PC3, mouse PC2, and yeast Kex2, respectively. Northern blot analysis indicated that the PC4 mRNA was detectable only in the testes after the 20th day of postnatal development. Moreover, this message was mainly expressed in the round spermatids. These data suggest that PC4 represents a prime candidate for a precursor-processing endoprotease in the testicular germ cells and that its gene expression is regulated during spermatogenesis.

Related Organizations
Keywords

Male, Genome, Base Sequence, Genes, Fungal, Molecular Sequence Data, Ovary, Mice, Inbred Strains, DNA, Polymerase Chain Reaction, Epithelium, Mice, Oligodeoxyribonucleotides, Organ Specificity, Multigene Family, Endopeptidases, Animals, Female, Amino Acid Sequence, Proprotein Convertases, Cloning, Molecular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    283
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
283
Top 10%
Top 1%
Top 0.1%
gold