Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetes
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Diabetes
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Association of the 1q25 Diabetes-Specific Coronary Heart Disease Locus With Alterations of the γ-Glutamyl Cycle and Increased Methylglyoxal Levels in Endothelial Cells

Authors: Caterina Pipino; Hetal Shah; Sabrina Prudente; Natalia Di Pietro; Lixia Zeng; Kyoungmin Park; Vincenzo Trischitta; +3 Authors

Association of the 1q25 Diabetes-Specific Coronary Heart Disease Locus With Alterations of the γ-Glutamyl Cycle and Increased Methylglyoxal Levels in Endothelial Cells

Abstract

A chromosome 1q25 variant (rs10911021) has been associated with coronary heart disease (CHD) in type 2 diabetes. In human umbilical vein endothelial cells (HUVECs), the risk allele “C” is associated with lower expression of the adjacent gene GLUL encoding glutamine synthase, converting glutamic acid to glutamine. To further investigate the mechanisms through which this locus affects CHD risk, we measured 35 intracellular metabolites involved in glutamic acid metabolism and the γ-glutamyl cycle in 62 HUVEC strains carrying different rs10911021 genotypes. Eight metabolites were positively associated with the risk allele (17–58% increase/allele copy, P = 0.046–0.002), including five γ-glutamyl amino acids, β-citryl-glutamate, N-acetyl-aspartyl-glutamate, and ophthalmate—a marker of γ-glutamyl cycle malfunction. Consistent with these findings, the risk allele was also associated with decreased glutathione-to-glutamate ratio (−9%, P = 0.012), decreased S-lactoylglutathione (−41%, P = 0.019), and reduced detoxification of the atherogenic compound methylglyoxal (+54%, P = 0.008). GLUL downregulation by shRNA caused a 40% increase in the methylglyoxal level, which was completely prevented by glutamine supplementation. In summary, we have identified intracellular metabolic traits associated with the 1q25 risk allele in HUVECs, including impairments of the γ-glutamyl cycle and methylglyoxal detoxification. Glutamine supplementation abolishes the latter abnormality, suggesting that such treatment may prevent CHD in 1q25 risk allele carriers.

Keywords

Endophthalmitis, cardiovascular-disease; oxidative stress; genetic variant; individuals; mellitus; glutathione; metabolism; plasma; beta citryl glutamate; gamma glutamyl amino acid; methylglyoxal; short hairpin RNA; chromosome 1q; allele; ischemic heart disease; non insulin dependent diabetes mellitus; coronary artery disease; Chromosomes, Human, Pair 1, Glutamine, Endothelial Cells, Coronary Disease, Dipeptides, Pyruvaldehyde, coronary heart disease; γ-glutamyl cycle; type 2 diabetes, Glutamates, Chromosomes, Human, Pair 1, Glutamate-Ammonia Ligase, Human Umbilical Vein Endothelial Cells, Humans, RNA, Small Interfering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
bronze