Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Different...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Differential Equations
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Differential Equations
Article . 2016 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2016
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2014
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions

Regularity theory for general stable operators

Authors: Ros-Oton, Xavier; Serra, Joaquim;

Regularity theory for general stable operators

Abstract

We establish sharp regularity estimates for solutions to $Lu=f$ in $��\subset\mathbb R^n$, being $L$ the generator of any stable and symmetric L��vy process. Such nonlocal operators $L$ depend on a finite measure on $S^{n-1}$, called the spectral measure. First, we study the interior regularity of solutions to $Lu=f$ in $B_1$. We prove that if $f$ is $C^��$ then $u$ belong to $C^{��+2s}$ whenever $��+2s$ is not an integer. In case $f\in L^\infty$, we show that the solution $u$ is $C^{2s}$ when $s\neq1/2$, and $C^{2s-��}$ for all $��>0$ when $s=1/2$. Then, we study the boundary regularity of solutions to $Lu=f$ in $��$, $u=0$ in $\mathbb R^n\setminus��$, in $C^{1,1}$ domains $��$. We show that solutions $u$ satisfy $u/d^s\in C^{s-��}(\overline��)$ for all $��>0$, where $d$ is the distance to $\partial��$. Finally, we show that our results are sharp by constructing two counterexamples.

arXiv admin note: text overlap with arXiv:1404.1197

Keywords

stable Lévy processes, Smoothness and regularity of solutions to PDEs, Probability (math.PR), Fractional partial differential equations, boundary regularity, Mathematics - Analysis of PDEs, Stable stochastic processes, FOS: Mathematics, interior regularity, Pseudodifferential operators, Mathematics - Probability, Analysis of PDEs (math.AP)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    110
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
110
Top 1%
Top 10%
Top 10%
Green
hybrid