Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular and Cellular Biochemistry
Article . 2007 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular and Cellular Biochemistry
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Cadherins are regulated by Ep-CAM via phosphaditylinositol-3 kinase

Authors: Winter, Manon J.; Cirulli, Vincenzo; Briaire-de Bruijn, Inge H.; Litvinov, Sergey V.;

Cadherins are regulated by Ep-CAM via phosphaditylinositol-3 kinase

Abstract

The cross-signaling between (cell) adhesion molecules is nowadays a well-accepted phenomenon and includes orchestrated cellular changes and changes in the microenvironment. For example, Ep-CAM is an epithelial adhesion molecule that prevails in active proliferating tissue and is suppressed in a more differentiated state of the cell. E-cadherin adhesion complexes are typical for the advanced and terminal differentiated cell status. During normal proliferation, E-cadherin is not suppressed. We have demonstrated the effect of overexpression of Ep-CAM on E-cadherin, which probably affects the connection of cadherins and F-actin. Phosphatidylinositol 3-kinase (Pi3K) participates in various regulating mechanisms, for example in signaling to nuclei, vesicle transport, and cytoskeletal rearrangements. The effect of Ep-CAM on E-cadherin mediated junctions as well as the involvement of Pi3K in regulating adherens junctions, led us to investigate the potential interaction between Pi3K and Ep-CAM. Introduction of Ep-CAM in the epithelial cells caused abrogation of N-cadherin mediated cell-cell adhesion, which could be inhibited by Pi3K inhibitor LY294002. Moreover, the Pi3K subunit p85 was precipitated with Ep-CAM from cell lysates, and this complex showed kinase activity. The Pi3K activity shuttled from N-cadherin to Ep-CAM. From our results, we conclude that Ep-CAM cross signaling with N-cadherin involves Pi3K, resulting in the abrogation of the cadherin adhesion complexes in epithelial cells.

Keywords

Morpholines, Clinical Biochemistry, Cell Biology, Cadherins, Epithelial Cell Adhesion Molecule, Cell Line, Phosphatidylinositol 3-Kinases, Antigens, Neoplasm, Chromones, Cell Adhesion, Humans, Molecular Biology, Cell Adhesion Molecules, Phosphoinositide-3 Kinase Inhibitors, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
hybrid