Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diabetologiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetologia
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Diabetologia
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Diabetologia
Article . 2011
versions View all 2 versions

Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice

Authors: A, Maida; B J, Lamont; X, Cao; D J, Drucker;

Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice

Abstract

Metformin is widely used for the treatment of type 2 diabetes. Although it reduces hepatic glucose production, clinical studies show that metformin may reduce plasma dipeptidyl peptidase-4 activity and increase circulating levels of glucagon-like peptide 1 (GLP-1). We examined whether metformin exerts glucoregulatory actions via modulation of the incretin axis.Metformin action was assessed in Glp1r(-/-), Gipr(-/-), Glp1r:Gipr(-/-), Pparα (also known as Ppara)(-/-) and hyperglycaemic obese wild-type mice with or without the GLP-1 receptor (GLP1R) antagonist exendin(9-39). Experimental endpoints included glucose tolerance, plasma insulin levels, gastric emptying and food intake. Incretin receptor expression was assessed in isolated islets from metformin-treated wild-type and Pparα(-/-) mice, and in INS-1 832/3 beta cells with or without peroxisome proliferator-activated receptor (PPAR)-α or AMP-activated protein kinase (AMPK) antagonists.In wild-type mice, metformin acutely increased plasma levels of GLP-1, but not those of gastric inhibitory polypeptide or peptide YY; it also improved oral glucose tolerance and reduced gastric emptying. Metformin significantly improved oral glucose tolerance despite loss of incretin action in Glp1r(-/-), Gipr(-/-) and Glp1r(-/-) :Gipr(-/-) mice, and in wild-type mice fed a high-fat diet and treated with exendin(9-39). Levels of mRNA transcripts for Glp1r, Gipr and Pparα were significantly increased in islets from metformin-treated mice. Metformin directly increased Glp1r expression in INS-1 beta cells via a PPAR-α-dependent, AMPK-independent mechanism. Metformin failed to induce incretin receptor gene expression in islets from Pparα(-/-) mice.As metformin modulates multiple components of the incretin axis, and enhances expression of the Glp1r and related insulinotropic islet receptors through a mechanism requiring PPAR-α, metformin may be mechanistically well suited for combination with incretin-based therapies.

Keywords

Male, Dipeptidyl Peptidase 4, Gastric Inhibitory Polypeptide, Glucagon-Like Peptide-1 Receptor, Metformin, Mice, Mutant Strains, Peptide Fragments, Cell Line, Receptors, Gastrointestinal Hormone, Mice, Inbred C57BL, Eating, Mice, Diabetes Mellitus, Type 2, Glucagon-Like Peptide 1, Receptors, Glucagon, Animals, Hypoglycemic Agents, PPAR alpha, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    268
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
268
Top 1%
Top 1%
Top 1%
bronze