Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Inhibitory Potency and Specificity of Subtilase-like Pro-protein Convertase (SPC) Prodomains

Authors: Polizois C. Limperis; Richard Leduc; Pierre Lavigne; Martin Fugère; Frederic Gagnon; Klaus Klarskov; Robert Day; +1 Authors

Inhibitory Potency and Specificity of Subtilase-like Pro-protein Convertase (SPC) Prodomains

Abstract

The SPCs (subtilisin-like pro-protein convertases) are a family of enzymes responsible for the proteolytic processing of numerous precursor proteins of the constitutive and regulated secretory pathways. SPCs are themselves synthesized as inactive zymogens. Activation of SPCs occurs via the intramolecular autocatalytic removal of the prodomain. SPC prodomains have been proposed as templates in the development of potent and specific SPC inhibitors. In this study, we investigated the specificity and potency of complete prodomains and short C-terminal prodomain peptides of each SPC on highly purified, soluble enzyme preparations of human SPC1, SPC6, and SPC7. Progress curve kinetic analysis of prodomain peptides and complete prodomains showed competitive inhibitory profiles in the low nanomolar range. Complete prodomains were 5-100 times more potent than C-terminal prodomain peptides, suggesting that N-terminal determinants are involved in the recognition process. However, complete prodomains and prodomain peptides exhibit only a partial specificity toward their cognate enzyme. Ala-scan structure activity studies indicated the importance of basic residues in the P(4), P(5), and P(6) positions for inhibition of SPC1. In contrast, hydrophobic residues in P(6) and P(7), as well as basic residues in P(4) and P(5), were critical for inhibition of SPC7. Our data demonstrated that the use of prodomains as specific inhibitors acting in trans would be of limited usefulness, unless modified into more specific compounds.

Keywords

Furin, Binding Sites, DNA, Complementary, Sequence Homology, Amino Acid, Circular Dichroism, Molecular Sequence Data, Binding, Competitive, Recombinant Proteins, Cell Line, Protein Structure, Tertiary, Inhibitory Concentration 50, Kinetics, Culture Media, Conditioned, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Chromatography, Gel, Proprotein Convertase 5, Humans, Amino Acid Sequence, Peptides, Plasmids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 10%
Top 10%
Top 10%
gold