Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article . 2004 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UNC Dataverse
Article . 2004
Data sources: Datacite
versions View all 3 versions

Interaction of mitochondrial initiation factor 2 with mitochondrial fMet-tRNA

Authors: Linda L. Spremulli; Angela C. Spencer;

Interaction of mitochondrial initiation factor 2 with mitochondrial fMet-tRNA

Abstract

The mammalian mitochondrial genome contains a single tRNAMet gene that gives rise to the initiator and elongator tRNAMet. It is generally believed that mitochondrial protein synthesis begins with formylmethionyl-tRNA, which indicates that the formylation of mitochondrial Met-tRNA specifies its participation in initiation through its interaction with initiation factor 2 (IF-2). However, recent studies in yeast mitochondria, suggest that formylation is not required for protein synthesis. In addition, bovine IF-2mt could replace yeast IF-2mt in strains that lack fMet-tRNA which suggests that this paradigm may extend to mammalian mitochondria. Here, the importance of the formylation of mitochondrial Met-tRNA for the interaction with IF-2mt was investigated by measuring the ability of bovine IF-2mt to bind mitochondrial fMet-tRNA. In direct binding experiments, bovine IF-2mt has a 25-fold greater affinity for mitochondrial fMet-tRNA than Met-tRNA, using either the native mitochondrial tRNAMet or an in vitro transcript of bovine mitochondrial tRNAMet. In addition, IF-2mt will not effectively stimulate mitochondrial Met-tRNA binding to mitochondrial ribosomes, exhibiting a 50-fold preference for fMet-tRNA over Met-tRNA in this assay. Finally, the region of IF-2mt responsible for the interaction with fMet-tRNA was mapped to the C2 sub-domain of domain VI of this factor.

Related Organizations
Keywords

Hydroxymethyl and Formyl Transferases, Mitochondrial Proteins, RNA, Transfer, Met, Saccharomyces cerevisiae Proteins, RNA, Mitochondrial, Animals, RNA, Cattle, Eukaryotic Initiation Factors, Peptide Chain Initiation, Translational, Ribosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
gold