Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2015 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Plasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury

Authors: Chad S. Siegel; Kathren L. Fink; Stephen M. Strittmatter; William B.J. Cafferty;

Plasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury

Abstract

Axons in the adult CNS fail to regenerate after injury, and therefore recovery from spinal cord injury (SCI) is limited. Although full recovery is rare, a modest degree of spontaneous recovery is observed consistently in a broad range of clinical and nonclinical situations. To define the mechanisms mediating spontaneous recovery of function after incomplete SCI, we created bilaterally complete medullary corticospinal tract lesions in adult mice, eliminating a crucial pathway for voluntary skilled movement. Anatomic and pharmacogenetic tools were used to identify the pathways driving spontaneous functional recovery in wild-type and plasticity-sensitized mice lacking Nogo receptor 1. We found that plasticity-sensitized mice recovered 50% of normal skilled locomotor function within 5 weeks of lesion. This significant, yet incomplete, spontaneous recovery was accompanied by extensive sprouting of intact rubrofugal and rubrospinal projections with the emergence of ade novocircuit between the red nucleus and the nucleus raphe magnus. Transient silencing of this rubro–raphe circuitin vivovia activation of the inhibitory DREADD (designer receptor exclusively activated by designer drugs) receptor hM4di abrogated spontaneous functional recovery. These data highlight the pivotal role of uninjured motor circuit plasticity in supporting functional recovery after trauma, and support a focus of experimental strategies on enhancing intact circuit rearrangement to promote functional recovery after SCI.

Related Organizations
Keywords

Male, Neuronal Plasticity, Nogo Proteins, Pyramidal Tracts, Mice, Transgenic, Recovery of Function, Functional Laterality, Designer Drugs, Mice, Inbred C57BL, Mice, Gene Expression Regulation, Glial Fibrillary Acidic Protein, Animals, Raphe Nuclei, Muscle Strength, Psychomotor Disorders, Stereotyped Behavior, Locomotion, Myelin Proteins, Spinal Cord Injuries

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 10%
hybrid