Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AJP Cell Physiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AJP Cell Physiology
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

HMGB1 inhibits macrophage activity in efferocytosis through binding to the αvβ3-integrin

Authors: Arnaud, Friggeri; Yanping, Yang; Sami, Banerjee; Yong-Jun, Park; Gang, Liu; Edward, Abraham;

HMGB1 inhibits macrophage activity in efferocytosis through binding to the αvβ3-integrin

Abstract

Phagocytosis of apoptotic cells is critical to resolution of inflammation. High mobility group box 1 protein (HMGB1), a mediator of inflammation, has been shown to diminish phagocytosis through binding to phosphatidylserine (PS) exposed on the surface of apoptotic neutrophils. However, it is currently unknown whether HMGB1 also modulates the activity of receptors involved in PS recognition on the surface of phagocytes. In the present studies, we found that preincubation of macrophages with HMGB1 decreased their ability to engulf apoptotic neutrophils or thymocytes. Preincubation of macrophages with HMGB1 prevented the enhancement of efferocytosis resulting from exposure to milk fat globule EGF factor 8 (MFG-E8), an opsonin that bridges PS and αvβ3 as well as αvβ5-integrins on the surface of phagocytes. The inhibitory effect of HMGB1 on the phagocytic activity of macrophages was prevented by preincubation of HMGB1 with soluble αvβ3, but not with soluble αvβ5. HMGB1 colocalized with the β3-integrin on the cell membrane of macrophages and bound to soluble αvβ3, but not to soluble αvβ5. HMGB1 suppressed the interaction between MFG-E8 and αvβ3. HMGB1 also inhibited intracellular signaling events, including ERK phosphorylation and Rac-1 activation, which are activated in macrophages during phagocytosis of apoptotic cells. These results demonstrate that HMGB1 blocks αvβ3-dependent recognition and uptake of apoptotic cells.

Related Organizations
Keywords

Male, Neutrophils, Apoptosis, Phosphatidylserines, Integrin alphaVbeta3, Milk Proteins, Recombinant Proteins, Mice, HEK293 Cells, Phagocytosis, Antigens, Surface, Macrophages, Peritoneal, Animals, Humans, Receptors, Vitronectin, HMGB1 Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    117
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
117
Top 1%
Top 10%
Top 10%
bronze