Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Inflammationarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Inflammation
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Inflammation
Article . 2014
versions View all 2 versions

Beyond Toll-Like Receptors: Porphyromonas gingivalis Induces IL-6, IL-8, and VCAM-1 Expression Through NOD-Mediated NF-κB and ERK Signaling Pathways in Periodontal Fibroblasts

Authors: Jianru Liu; Yixiang Wang; Xiangying Ouyang;

Beyond Toll-Like Receptors: Porphyromonas gingivalis Induces IL-6, IL-8, and VCAM-1 Expression Through NOD-Mediated NF-κB and ERK Signaling Pathways in Periodontal Fibroblasts

Abstract

To investigate whether oligomerization domains (NODs) are involved in Porphyromonas gingivalis-induced interleukin (IL)-6, IL-8, and vascular cell adhesion molecule (VCAM)-1 expression beyond Toll-like receptors (TLRs), we investigated the role of NOD1/2 in P. gingivalis-induced IL-6, IL-8, and VCAM-1 expression in human gingival fibroblasts (hGFs) and periodontal ligament cells (hPDLCs). The mechanism was explored by activation and silence of NODs, electrophoretic mobility shift assay (EMSA), and pathway blockade assays. Results showed that P. gingivalis could induce NOD1, NOD2, IL-6, IL-8, and VCAM-1 expression in hGFs and hPDLs at mRNA and protein levels. Activation of NOD1/2 by agonists could clearly upregulate the expression of these genes, while silence of NOD1/2 could remarkably attenuate them. EMSA and blockade of NF-κB and extracellular-signal-regulated kinase (ERK)1/2 pathway assays also verified that the two pathways were involved in NOD1/2-mediated IL-6, IL-8, and VCAM-1 expression. In conclusion, our findings demonstrated that P. gingivalis induced IL-6, IL-8, and VCAM-1 expression in hGFs and hPDLCs through NOD1/2-mediated NF-κB and ERK1/2 signaling pathways beyond TLRs.

Related Organizations
Keywords

Adult, Male, Dose-Response Relationship, Drug, Interleukin-6, MAP Kinase Signaling System, Interleukin-8, Gingiva, NF-kappa B, Nod2 Signaling Adaptor Protein, Fibroblasts, Diaminopimelic Acid, Nod1 Signaling Adaptor Protein, Host-Pathogen Interactions, Nod Signaling Adaptor Proteins, Humans, Female, Extracellular Signal-Regulated MAP Kinases, Acetylmuramyl-Alanyl-Isoglutamine, Oligopeptides, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%