Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao OMICS A Journal of I...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions

Integrative Responses to High pH Stress in S. cerevisiae

Authors: Joaquín, Ariño;

Integrative Responses to High pH Stress in S. cerevisiae

Abstract

Abstract The budding yeast Saccharomyces cerevisiae grows far better at acidic than at neutral or alkaline pH. Consequently, even a modest alkalinization of the medium represents a stressful situation for this yeast. In the past few years, data generated by a combination of genome-wide techniques has demonstrated that adaptive responses of S. cerevisiae to high pH stress involves extensive gene remodeling as a result of the fast activation of a number of stress-related signaling pathways, such as the Rim101, the Wsc1-Pkc1-Slt2 MAP kinase, and the calcium-activated calcineurin pathways. Alkalinization of the environment also disturbs nutrient homeostasis, as deduced from its impact on iron/copper, phosphate, and glucose uptake/utilization pathways. In this review we will examine these responses, their possible interactions, and the role that they play in tolerance to high pH stress.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Stress, Physiological, Calcineurin, Gene Expression Regulation, Fungal, Homeostasis, Saccharomyces cerevisiae, Hydrogen-Ion Concentration, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%