Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Development
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis

Authors: Mark, Rosenzweig; Karen M, Brennan; Timothy D, Tayler; Paul O, Phelps; Ardem, Patapoutian; Paul A, Garrity;

The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis

Abstract

Thermotaxis is important for animal survival, but the molecular identities of temperature sensors controlling this behavior have not been determined. We demonstrate dTRPA1, a heat-activated Transient Receptor Potential (TRP) family ion channel, is essential for thermotaxis in Drosophila. dTrpA1 knockdown eliminates avoidance of elevated temperatures along a thermal gradient. We observe dTRPA1 expression in cells without previously ascribed roles in thermosensation and implicate dTRPA1-expressing neurons in mediating thermotaxis. Our data suggest that thermotaxis relies upon neurons and molecules distinct from those required for high-temperature nociception. We propose dTRPA1 may control thermotaxis by sensing environmental temperature.

Keywords

Hot Temperature, Larva, Animals, Drosophila Proteins, Drosophila, Ion Channels, Body Temperature Regulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    280
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
280
Top 1%
Top 1%
Top 1%
Published in a Diamond OA journal