Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecules and Cellsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules and Cells
Article . 2013 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Hypermethylation of EBF3 and IRX1 Genes in Synovial Fibroblasts of Patients with Rheumatoid Arthritis

Authors: Sung-Hoon, Park; Seong-Kyu, Kim; Jung-Yoon, Choe; Youngho, Moon; Sungwhan, An; Mae Ja, Park; Dong Sun, Kim;

Hypermethylation of EBF3 and IRX1 Genes in Synovial Fibroblasts of Patients with Rheumatoid Arthritis

Abstract

Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disease of unknown origin, which exhibits a complex heterogeneity in its pathophysiological background, resulting in differential responses to a range of therapies and poor long-term prognosis. RA synovial fibroblasts (RASFs) are key player cells in RA pathogenesis. Identification of DNA methylation biomarkers is a field that provides potential for improving the process of diagnosis and prognosis of various human diseases. We utilized a genome-wide technique, methylated DNA isolation assay (MeDIA), in combination with a high resolution CpG microarray for discovery of novel hypermethylated genes in RASFs. Thirteen genes (APEX1, EBF3, EGR2, EN1, IRX1, IRX6, KIF12, LHX2, MIPOL1, SGTA, SIN3A, TOLLIP, and ZHX2) with three consecutive hypermethylated probes were isolated as candidate genes through two CpG microarrays. Pyrosequencing assay was performed to validate the methylation status of TGF-β signaling components, EBF3 and IRX1 genes in RASFs and osteoarthritis (OA) SFs. Hypermethylation at CpG sites in the EBF3 and IRX1 genes was observed with a high methylation index (MI) in RASFs (52.5% and 41.4%, respectively), while a lower MI was observ ed in OASFs and h ealthy SFs (13.2% for EBF3 and 4.3% for IRX1). In addition, RT-PCR analysis showed a remarkable decrease in their mRNA expression in the RA group, compared with the OA or healthy control, and their reduction levels correlated with MI. The current findings suggest that methylation-associated down-regulation of EBF3 and IRX1 genes may play an important role in a pathogenic effect of TGF-β on RASFs. However, further clinical validation with large numbers of patients is needed in order to confirm our findings.

Related Organizations
Keywords

Homeodomain Proteins, Base Sequence, Molecular Sequence Data, Synovial Membrane, Down-Regulation, DNA Methylation, Fibroblasts, Arthritis, Rheumatoid, Humans, Microtubule-Associated Proteins, Cells, Cultured, Genome-Wide Association Study, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%
gold