Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Slits contribute to the guidance of retinal ganglion cell axons in the mammalian optic tract

Authors: Thompson, Hannah; Barker, David; Camand, Olivier; Erskine, Lynda;

Slits contribute to the guidance of retinal ganglion cell axons in the mammalian optic tract

Abstract

RGC axons extend in the optic tracts in a manner that correlates with the expression in the hypothalamus and epithalamus of a soluble factor inhibitory to RGC axon outgrowth. Additionally, although the RGC axons extend adjacent to the telencephalon, they do not normally grow into this tissue. Here, we show that slit1 and slit2, known chemorepellents for RGC axons expressed in specific regions of the diencephalon and telencephalon, help regulate optic tract development. In mice lacking slit1 and slit2, a subset of RGC axons extend into the telencephalon and grow along the pial surface but not more deeply into this tissue. Surprisingly, distinct guidance errors occur in the telencephalon of slit1 -/-; slit2 +/- and slit1/2 -/- embryos, suggesting that the precise level of Slits is critical for determining the path followed by individual axons. In mice lacking both slit1 and slit2, a subset of RGC axons also project aberrantly into the epithalamus, pineal and across the dorsal midline. However, many axons reach their primary target, the superior colliculus. This demonstrates that Slits play an important role in directing the guidance of post-crossing RGC axons within the optic tracts but are not required for target innervation.

Keywords

Mice, Knockout, Retinal Ganglion Cells, 570, Axon guidance, 610, Nerve Tissue Proteins, Cell Biology, Robo, Slit Homolog 2 Protein, Axons, Mice, Inbred C57BL, Mice, Slit, Animals, Intercellular Signaling Peptides and Proteins, Female, Visual Pathways, Retinal ganglion cell, Optic tract, Molecular Biology, Growth cone, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
hybrid