Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Clini...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Clinical Investigation
Article . 2011 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice

Authors: Migliorini, Domenico; Bogaerts, Sven; Defever, Dieter; Vyas, Rajesh; Denecker, Geertrui; Radaelli, Enrico; Zwolinska, Aleksandra; +4 Authors

Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice

Abstract

Biochemical studies have suggested conflicting roles for the E3 ubiquitin ligase constitutive photomorphogenesis protein 1 (Cop1; also known as Rfwd2) in tumorigenesis, providing evidence for both the oncoprotein c-Jun and the tumor suppressor p53 as its targets. Here we present what we believe to be the first in vivo investigation of the role of Cop1 in cancer etiology. Using an innovative genetic approach to generate an allelic series of Cop1, we found that Cop1 hypomorphic mice spontaneously developed malignancy at a high frequency in the first year of life and were highly susceptible to radiation-induced lymphomagenesis. Further analysis revealed that c-Jun was a key physiological target for Cop1 and that Cop1 constitutively kept c-Jun at low levels in vivo and thereby modulated c-Jun/AP-1 transcriptional activity. Importantly, Cop1 deficiency stimulated cell proliferation in a c-Jun-dependent manner. Focal deletions of COP1 were observed at significant frequency across several cancer types, and COP1 loss was determined to be one of the mechanisms leading to c-Jun upregulation in human cancer. We therefore conclude that Cop1 is a tumor suppressor that functions, at least in part, by antagonizing c-Jun oncogenic activity. In the absence of evidence for a genetic interaction between Cop1 and p53, our data strongly argue against the use of Cop1-inhibitory drugs for cancer therapy.

Keywords

Male, 129 Strain, Inbred C57BL, Transgenic, TRANSCRIPTIONAL ACTIVITY, Mice, Pregnancy, Neoplasms, RNA, Small Interfering, IN-VIVO, TRANSGENIC MICE, N-TERMINAL KINASE, Transcription Factor AP-1 -- genetics -- metabolism, Protein Stability, Nuclear Proteins, PROSTATE-CANCER, Mutant Strains, Female, Neoplasms -- etiology -- genetics -- metabolism, Heterozygote, Mice, 129 Strain, MAP Kinase Signaling System, Mice, Transgenic, CELL-CYCLE PROGRESSION, Tumor Suppressor Protein p53 -- metabolism, Animals, Humans, BETHESDA PROPOSALS, Cell Proliferation, JNK Mitogen-Activated Protein Kinases -- genetics -- metabolism, Base Sequence, JNK Mitogen-Activated Protein Kinases, Small Interfering -- genetics, Biology and Life Sciences, MOUSE DEVELOPMENT, Ubiquitin-Protein Ligases -- deficiency -- genetics -- metabolism, NEGATIVE REGULATOR, UBIQUITIN LIGASE COP1, Tumor Suppressor Proteins -- deficiency -- genetics -- metabolism, Sciences biomédicales, Mice, Mutant Strains, Mice, Inbred C57BL, Transcription Factor AP-1, Ubiquitin-protein ligases ; animals ; tumor suppressor protein p53 ; transcription factor AP-1; protein stability ; humans ; mice ; RNA, small interfering ; mice, transgenic ; cell proliferation ; tumor suppressor proteins ; pregnancy ; mice, 129 strain ; neoplasms ; Base Sequence ; MAP kinase signaling system ; mice, mutant strains ; nuclear proteins ; heterozygote ; JNK mitogen-activated protein kinases ; mice, inbred C57BL ; female ; male, RNA, Nuclear Proteins -- deficiency -- genetics -- metabolism

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    112
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
112
Top 10%
Top 10%
Top 1%
Green
gold