OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa)
pmid: 21973088
OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa)
• Auxin has an important role in maintaining optimal root system architecture (RSA) that can cope with growth reductions of crops caused by water or nutrient shortages. However, the mechanism of controlling RSA remains largely unclear. Here, we found a limiting factor of RSA--OsARF12--an auxin response factor whose knockout led to decreased primary root length in rice (Oryza sativa). • OsARF12 as a transcription activator can facilitate the expression of the auxin response element DR5::GFP, and OsARF12 was inhibited by osa-miRNA167d by transient expression in tobacco and rice callus. • The root elongation zones of osarf12 and osarf12/25, which had lower auxin concentrations, were distinctly shorter than for the wild-type, possibly as a result of decreased expression of auxin synthesis genes OsYUCCAs and auxin efflux carriers OsPINs and OsPGPs. The knockout of OsARF12 also altered the abundance of mitochondrial iron-regulated (OsMIR), iron (Fe)-regulated transporter1 (OsIRT1) and short postembryonic root1 (OsSPR1) in roots of rice, and resulted in lower Fe content. • The data provide evidence for the biological function of OsARF12, which is implicated in regulating root elongation. Our investigation contributes a novel insight for uncovering regulation of RSA and the relationship between auxin response and Fe acquisition.
- China Agricultural University China (People's Republic of)
- Zhejiang Ocean University China (People's Republic of)
- State Key Laboratory of Plant Physiology and Biochemistry China (People's Republic of)
Nicotiana, Indoleacetic Acids, Iron, Biological Transport, Oryza, Genes, Plant, Plant Roots, Gene Knockout Techniques, MicroRNAs, Protein Transport, Gene Expression Regulation, Plant, Mutation, Trans-Activators, Plant Shoots, Plant Proteins, Subcellular Fractions
Nicotiana, Indoleacetic Acids, Iron, Biological Transport, Oryza, Genes, Plant, Plant Roots, Gene Knockout Techniques, MicroRNAs, Protein Transport, Gene Expression Regulation, Plant, Mutation, Trans-Activators, Plant Shoots, Plant Proteins, Subcellular Fractions
8 Research products, page 1 of 1
- 2017IsRelatedTo
- 2013IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2022IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).178 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
