Powered by OpenAIRE graph

Enhanced Growth of Pancreatic Tumors in SPARC-Null Mice Is Associated With Decreased Deposition of Extracellular Matrix and Reduced Tumor Cell Apoptosis

Authors: Pauli A, Puolakkainen; Rolf A, Brekken; Sabeeha, Muneer; E Helene, Sage;

Enhanced Growth of Pancreatic Tumors in SPARC-Null Mice Is Associated With Decreased Deposition of Extracellular Matrix and Reduced Tumor Cell Apoptosis

Abstract

Abstract SPARC, a matricellular glycoprotein, modulates cellular interaction with the extracellular matrix (ECM). Tumor growth and metastasis occur in the context of the ECM, the levels and deposition of which are controlled in part by SPARC. Tumor-derived SPARC is reported to stimulate or retard tumor progression depending on the tumor type, whereas the function of host-derived SPARC in tumorigenesis has not been explored fully. To evaluate the function of endogenous SPARC, we have examined the growth of pancreatic tumors in SPARC-null (SP−/−) mice and their wild-type (SP+/+) counterparts. Mouse pancreatic adenocarcinoma cells injected s.c. grew significantly faster in SP−/− mice than cells injected into SP+/+ animals, with mean tumor weights at sacrifice of 0.415 ± 0.08 and 0.086 ± 0.03 g (P < 0.01), respectively. Lack of endogenous SPARC resulted in decreased collagen deposition and fiber formation, alterations in the distribution of tumor-infiltrating macrophages, and decreased tumor cell apoptosis. There was no difference in microvessel density of tumors from SP−/− or SP+/+ mice. However, tumors grown in SP−/− had a lower percentage of blood vessels that expressed smooth muscle α-actin, a marker of pericytes. These data reflect the importance of ECM deposition in regulating tumor growth and demonstrate that host-derived SPARC is a critical factor in the response of host tissue to tumorigenesis.

Keywords

Mice, Knockout, Neovascularization, Pathologic, Caspase 3, Macrophages, Apoptosis, Extracellular Matrix, Pancreatic Neoplasms, Mice, Caspases, Cell Line, Tumor, Animals, Osteonectin, Gene Deletion, Neoplasm Transplantation, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    142
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
142
Top 10%
Top 10%
Top 10%