Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genetics and Molecul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics and Molecular Research
Article . 2013 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Critical evaluation of transcription factor Atf2 as a candidate modulator of alcohol preference in mouse and human populations

Authors: L S, Wang; Y, Jiao; Y, Huang; X Y, Liu; G, Gibson; B, Bennett; K M, Hamre; +8 Authors

Critical evaluation of transcription factor Atf2 as a candidate modulator of alcohol preference in mouse and human populations

Abstract

In prior work, congenic strains carrying the DBA/2Igb (D2) region of chromosome 2 (Chr2) for alcohol preference were bred onto a C57BL/6Ibg (B6) background and as predicted were found to reduce voluntary consumption. Subsequently, interval-specific congenic recombinant strains (ISCRS) were generated and also tested. These ISCRS strains reduced the quantitative trait loci (QTL) interval to a comparatively small 3.4 Mb region. Here, we have exploited an integrative approach using both murine and human populations to critically evaluate candidate genes within this region. First, we used bioinformatics tools to search for genes relevant to alcohol preference within the QTL region. Second, we searched for single nucleotide polymorphisms (SNPs) within exons of every gene in this region. Third, we conducted follow-up microarray analyses to identify differentially expressed genes between the B6 and ISCRS strains in mice from each group. Fourth, we analyzed correlations between the expression level of candidate genes and phenotypes of alcohol preference in a large family of BXD recombinant inbred strains derived from B6 and D2. Finally, we evaluated SNP segregation in both BXD mouse strains and in humans who were heavy alcohol drinkers or non-drinkers. Among several potential candidate genes in this region, we identified activating transcription factor 2 (Atf2) as the most plausible gene that would influence alcohol preference. However, the candidacy of Atf2 was only weakly supported when we used a genetic network approach and by focused reanalysis of genome-wide association study data from European-American and African-American populations. Thus, we cannot conclude that Atf2 plays a role in the regulation of the QTL of mouse Chr2.

Keywords

Activating Transcription Factor 2, Alcohol Drinking, Base Sequence, Quantitative Trait Loci, Sequence Analysis, DNA, Hippocampus, Polymorphism, Single Nucleotide, Mice, Inbred C57BL, Alcoholism, Mice, Mice, Inbred DBA, Chromosomes, Human, Pair 2, Animals, Humans, Genetic Predisposition to Disease, Transcriptome, Genetic Association Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
gold