Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

SLK-mediated phosphorylation of paxillin is required for focal adhesion turnover and cell migration

Authors: Laurin Aa; Quizi Jl; Roshan Sriram; Roshan Sriram; Kyla D. Baron; Kyla D. Baron; Khalid N. Al-Zahrani; +5 Authors

SLK-mediated phosphorylation of paxillin is required for focal adhesion turnover and cell migration

Abstract

Focal adhesion turnover is a complex process required for cell migration. We have previously shown that the Ste20-like kinase (SLK) is required for cell migration and efficient focal adhesion (FA) turnover in a FA kinase (FAK)-dependent manner. However, the role of SLK in this process remains unclear. Using a candidate substrate approach, we show that SLK phosphorylates the adhesion adapter protein paxillin on serine 250. Serine 250 phosphorylation is required for paxillin redistribution and cell motility. Mutation of paxillin serine 250 prevents its phosphorylation by SLK in vitro and results in impaired migration in vivo as evidenced by an accumulation of phospho-FAK-Tyr397 and altered FA turnover rates. Together, our data suggest that SLK phosphorylation of paxillin on serine 250 is required for FAK-dependent FA dynamics.

Keywords

Focal Adhesions, Recombinant Fusion Proteins, Molecular Sequence Data, 3T3 Cells, Protein Serine-Threonine Kinases, Protein Structure, Tertiary, Substrate Specificity, Mice, Phosphoserine, Cell Movement, Mutagenesis, Site-Directed, Animals, Humans, Amino Acid Sequence, Paxillin, Phosphorylation, Protein Processing, Post-Translational, Sequence Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
bronze