Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arthritis Research &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Arthritis Research & Therapy
Article . 2012 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Arthritis Research & Therapy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

TLR4-mediated IL-12 production enhances IFN-γ and IL-1β production, which inhibits TGF-β production and promotes antibody-induced joint inflammation

Authors: Kim, Hye; Chung, Doo;

TLR4-mediated IL-12 production enhances IFN-γ and IL-1β production, which inhibits TGF-β production and promotes antibody-induced joint inflammation

Abstract

Abstract Introduction Toll-like receptor (TLR)4 promotes joint inflammation in mice. Despite that several studies report a functional link between TLR4 and interleukin-(IL-)1β in arthritis, TLR4-mediated regulation of the complicated cytokine network in arthritis is poorly understood. To address this, we investigated the mechanisms by which TLR4 regulates the cytokine network in antibody-induced arthritis. Methods To induce arthritis, we injected mice with K/BxN serum. TLR4-mediated pathogenesis in antibody-induced arthritis was explored by measuring joint inflammation, cytokine levels and histological alteration. Results Compared to wild type (WT) mice, TLR4-/- mice showed attenuated arthritis and low interferon (IFN)-γ, IL-12p35 and IL-1β transcript levels in the joints, but high transforming growth factor (TGF)-β expression. Injection of lipopolysaccharide (LPS) enhanced arthritis and exaggerated joint cytokine alterations in WT, but not TLR4-/- or IL-12p35-/- mice. Moreover, STAT4 phosphorylation in joint cells and intracellular IL-12p35 expression in macrophages, mast cells and Gr-1+ cells were detected in WT mice with arthritis and enhanced by LPS injection. Therefore, IL-12p35 appears to act downstream of TLR4 in antibody-induced arthritis. TLR4-mediated IL-12 production enhanced IFN-γ and IL-1β production via T-bet and pro-IL-1β production. Recombinant IL-12, IFN-γ and IL-1β administration restored arthritis, but reduced joint TGF-β levels in TLR4-/- mice. Moreover, a TGF-β blockade restored arthritis in TLR4-/- mice. Adoptive transfer of TLR4-deficient macrophages and mast cells minimally altered joint inflammation and cytokine levels in macrophage- and mast cell-depleted WT mice, respectively, whereas transfer of WT macrophages or mast cells restored joint inflammation and cytokine expression. Gr-1+ cell-depleted splenocytes partially restored arthritis in TLR4-/- mice. Conclusion TLR4-mediated IL-12 production by joint macrophages, mast cells and Gr-1+ cells enhances IFN-γ and IL-1β production, which suppresses TGF-β production, thereby promoting antibody-induced arthritis.

Keywords

Lipopolysaccharides, Male, Immunology, Interleukin-1beta, Mice, Transgenic, Interferon-gamma, Mice, Rheumatology, Mice, Inbred NOD, Transforming Growth Factor beta, Immunology and Allergy, Animals, Mast Cells, Mice, Knockout, Arthritis, Macrophages, Interleukin-12, Mice, Inbred C57BL, Toll-Like Receptor 4, Disease Models, Animal, Female, Research Article, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
Green
gold