Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 2007
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 2007 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Oxidative Stress Via Hydrogen Peroxide Affects Proopiomelanocortin Peptides Directly in the Epidermis of Patients with Vitiligo

Authors: Spencer, Jennifer D.; Gibbons, Nicholas C.J.; Rokos, Hartmut; Peters, Eva M.J.; Wood, John M.; Schallreuter, Karin U.;

Oxidative Stress Via Hydrogen Peroxide Affects Proopiomelanocortin Peptides Directly in the Epidermis of Patients with Vitiligo

Abstract

The human skin holds the capacity for autocrine processing of the proopiomelanocortin (POMC)-derived peptides. Recent data demonstrated the presence and functionality of ACTH, alpha- and beta-melanocyte-stimulating hormone (MSH), and beta-endorphin in the regulation of skin pigmentation, and a role has been put forward for alpha-MSH as an effective antioxidant. In patients with vitiligo, decreased epidermal POMC processing and low alpha-MSH levels were documented previously. These patients accumulate hydrogen peroxide (H2O2) in the 10(-3) M range in their epidermis. Therefore, we examined the involvement of H2O2 on POMC-derived peptides as possible targets for oxidation by this reactive oxygen species. To address this, we employed immunofluorescence labelling, dot blot analysis, Fourier transform Raman spectroscopy, functionality studies, and computer simulation of the peptide structures. We demonstrate H2O2-mediated oxidation of epidermal ACTH, alpha-MSH, and beta-endorphin in vitiligo owing to oxidation of methionine residues in the sequences of these peptides. Moreover, we show that oxidized beta-endorphin loses its function in the promotion of pigmentation in melanocytes. These changes are reversible upon the reduction of H2O2 levels by a pseudocatalase PC-KUS. Moreover, oxidation of alpha-MSH can be prevented by the formation of a 1:1 complex with the abundant cofactor (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin. Thus, using vitiligo, we demonstrate that H2O2 can affect pigmentation via epidermal POMC peptide redox homeostasis.

Keywords

Pro-Opiomelanocortin, Vitiligo, Skin Pigmentation, Dermatology, Spectrum Analysis, Raman, Biochemistry, Models, Biological, Adrenocorticotropic Hormone, Humans, Computer Simulation, Molecular Biology, Cells, Cultured, Melanins, Fourier Analysis, beta-Endorphin, Cell Biology, Hydrogen Peroxide, Catalase, Peptide Fragments, Biopterins, Oxidative Stress, alpha-MSH, Epidermis, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 10%
Top 10%
Top 1%
hybrid