Modulation of human ether-a-go-go-related K+ (HERG) channel inactivation by Cs+ and K+
Modulation of human ether-a-go-go-related K+ (HERG) channel inactivation by Cs+ and K+
Unlike many other native and cloned K+ channels, human ether-à-go-go-related K+ (HERG) channels show significant Cs+ permeability with a PCs/PK (the permeability of Cs+ relative to that of K+) of 0.36 +/- 0.03 (n = 10). Here, we find that raising the concentration of external Cs+ (Cs+o) dramatically slows HERG channel inactivation without affecting activation. Replacement of 5 mM K+o by 135 mM Cs+o increased both inactivation and recovery time constants and shifted the mid-point of the steady-state inactivation curve by 25 mV in the depolarized direction (n = 6, P < 0.01). Raising [Cs+]o also modulated the voltage sensitivity of inactivation gating. With 130 mM Cs+i and 135 mM NMDG+o, the inactivation time constant decreased e-fold per 47.5 +/- 1.1 mV (n = 5), and when 20 mM Cs+ was added to the bath solution, the inactivation time constant decreased e-fold per 20.6 +/- 1.3 mV (n = 5, P < 0.01). A quantitative analysis suggests that Cs+o binds to a site in the pore that is influenced by the transmembrane electrical field, so that Cs+o-induced slowing of HERG inactivation is less prominent at strong depolarizations. K+o has effects that are similar to Cs+o and their effects were additive, suggesting Cs+o and K+o may share a common mechanism of action. The strong effects of Cs+ on inactivation but not on activation highlight the importance of ion and channel interactions during the onset of inactivation in the HERG channel.
ERG1 Potassium Channel, Potassium Channels, Cesium, Kidney, Transfection, Ether-A-Go-Go Potassium Channels, Cell Line, Membrane Potentials, Kinetics, Potassium Channels, Voltage-Gated, Potassium, Potassium Channel Blockers, Humans, Cation Transport Proteins
ERG1 Potassium Channel, Potassium Channels, Cesium, Kidney, Transfection, Ether-A-Go-Go Potassium Channels, Cell Line, Membrane Potentials, Kinetics, Potassium Channels, Voltage-Gated, Potassium, Potassium Channel Blockers, Humans, Cation Transport Proteins
18 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
