Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Letters
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cancer Letters
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

The SxxSS motif of T-cell factor-4 isoforms modulates Wnt/β-catenin signal activation in hepatocellular carcinoma cells

Authors: Yoshito, Tomimaru; Hironori, Koga; Tai Ho, Shin; Chelsea Q, Xu; Jack R, Wands; Miran, Kim;

The SxxSS motif of T-cell factor-4 isoforms modulates Wnt/β-catenin signal activation in hepatocellular carcinoma cells

Abstract

T-cell factor (TCF) proteins represent key transcription factors in Wnt signaling. We show that the SxxSS motif in TCF-4 regulates transcriptional activity in HCC cells. TCF-4K mutants increased transcriptional activity compared to TCF-4K (bearing the SxxSS); the binding pattern of co-factors in TCF-4K mutants was similar to that in TCF-4J (lacking the SxxSS). TCF activity in TCF-4K cells was suppressed by homeodomain-interacting protein kinase 2 (HIPK2), but not in TCF-4J cells. Together, our data indicates that the SxxSS motif in TCF-4K regulates transcriptional activity by modifying co-factors in the β-catenin/TCF-4 transcriptional complex and these events may be mediated through HIPK2.

Related Organizations
Keywords

Transcriptional Activation, Carcinoma, Hepatocellular, Basic Helix-Loop-Helix Leucine Zipper Transcription Factors, Amino Acid Motifs, Liver Neoplasms, Molecular Sequence Data, Protein Serine-Threonine Kinases, Transfection, Wnt Proteins, Transcription Factor 4, Cell Line, Tumor, Humans, Protein Isoforms, Amino Acid Sequence, Phosphorylation, Carrier Proteins, beta Catenin, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
bronze