Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neurotrau...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neurotrauma
Article . 2002 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions

Alterations in BDNF and Synapsin I within the Occipital Cortex and Hippocampus after Mild Traumatic Brain Injury in the Developing Rat: Reflections of Injury-Induced Neuroplasticity

Authors: G. S. Griesbach; D. A. Hovda; R. Molteni; F. Gomez Pinilla;

Alterations in BDNF and Synapsin I within the Occipital Cortex and Hippocampus after Mild Traumatic Brain Injury in the Developing Rat: Reflections of Injury-Induced Neuroplasticity

Abstract

Brain-derived neurotrophic factor (BDNF), its signal transduction receptor trkB, and its downstream effector, synapsin I, were measured in the hippocampus and occipital cortex of young animals after fluid-percussion brain injury (FPI). Isofluorane anaesthetized postnatal day 19 rats were subjected to a mild lateral FPI or sham injury. Rats were sacrificed at 24 h, 7 days, or 14 days after injury in order to determine mRNA expression. Additional animals were sacrificed at 7 and 14 days after injury for protein analysis. Only FPI animals exhibited hemispheric differences in BDNF levels. These animals exhibited a contralateral increase, ranging from 40% to 75%, in BDNF mRNA within both the hippocampus and occipital cortex at 24 h and 7 days after injury. The increase in message within the occipital cortex was accompanied by an increase in BDNF protein at 7 and 14 days after injury. However, hippocampal BDNF protein increased in both hemispheres at postinjury day 7 and was restricted to the ipsilateral hippocampus at postinjury day 14. At postinjury day 7, both trkB and synapsin I mRNA expression increased ipsilaterally and decreased contralaterally in the occipital cortex. In addition, synapsin I phosphorylation was increased by 20% in the ipsilateral cortex and by 30% in the hippocampus on this day. These results indicate that the developing brain responds to a mild injury by modifying factors related to synaptic plasticity and suggest that regions remote from the site of injury express neurotrophic signals potentially needed for compensatory responses.

Keywords

Male, Neuronal Plasticity, Brain-Derived Neurotrophic Factor, Gene Expression Regulation, Developmental, Phosphoproteins, Synapsins, Hippocampus, Rats, Rats, Sprague-Dawley, Animals, Newborn, Brain Injuries, Animals, Receptor, trkB, Occipital Lobe, RNA, Messenger, Animals ; Brain-Derived Neurotrophic Factor ; Hippocampus ; Synapsins ; Messenger RNA ; Rats; Receptor trkB ; Neuronal Plasticity ; Brain Injuries ; Gene Expression Regulation ; Occipital Lobe

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
82
Top 10%
Top 10%
Top 10%