Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuronarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 1995 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 1995
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 1995
versions View all 4 versions

Receptor tyrosine kinase specific for the skeletal muscle lineage: Expression in embryonic muscle, at the neuromuscular junction, and after injury

Authors: Michelle M. Le Beau; David J. Glass; David M. Valenzuela; Nancy A. Jenkins; John S. Park; George D. Yancopoulos; Debra L Compton; +11 Authors

Receptor tyrosine kinase specific for the skeletal muscle lineage: Expression in embryonic muscle, at the neuromuscular junction, and after injury

Abstract

While a number of growth factors have been described that are highly specific for particular cell lineages, neither a factor nor a receptor uniquely specific to the skeletal muscle lineage has previously been described. Here we identify a receptor tyrosine kinase (RTK) specific to skeletal muscle, which we term "MuSK" for muscle-specific kinase. MuSK is expressed at low levels in proliferating myoblasts and is induced upon differentiation and fusion. In the embryo, it is specifically expressed in early myotomes and developing muscle. MuSK is then dramatically down-regulated in mature muscle, where it remains prominent only at the neuromuscular junction; MuSK is thus the only known RTK that localizes to the neuromuscular junction. Strikingly, MuSK expression is dramatically induced throughout the adult myofiber after denervation, block of electrical activity, or physical immobilization. In humans, MuSK maps to chromosome 9q31.3-32, which overlaps with the region reported to contain the Fukuyama muscular dystrophy mutation. Identification of MuSK introduces a novel receptor-factor system that seems sure to play an important and selective role in many aspects of skeletal muscle development and function.

Related Organizations
Keywords

Neuroscience(all), Molecular Sequence Data, Neuromuscular Junction, Chromosome Mapping, Gene Expression, Receptor Protein-Tyrosine Kinases, Blotting, Northern, Polymerase Chain Reaction, Muscle Denervation, Rats, Mice, Synapses, Animals, Humans, Receptors, Cholinergic, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, Chromosomes, Human, Pair 9, Muscle, Skeletal, Conserved Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    411
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
411
Top 1%
Top 1%
Top 1%
hybrid