Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2008 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

NeuroD1 Regulates Expression of Thyroid Hormone Receptor β2 and Cone Opsins in the Developing Mouse Retina

Authors: Hong, Liu; Paige, Etter; Susan, Hayes; Iwan, Jones; Branden, Nelson; Byron, Hartman; Douglas, Forrest; +1 Authors

NeuroD1 Regulates Expression of Thyroid Hormone Receptor β2 and Cone Opsins in the Developing Mouse Retina

Abstract

The correct patterning of opsin expression in cone photoreceptors is critical for normal color vision. Thyroid hormone, and one of its receptors [thyroid hormone receptor β2 (TRβ2)], is an important regulator of opsin expression during cone photoreceptor development. Mice have two genes, encoding medium-wavelength (M) and short-wavelength (S) cone opsins. Targeted deletion of TRβ2 leads to a uniform expression of S-opsin in all cone photoreceptors and a loss of M-opsin. The control of expression of TRβ2 is therefore central to cone differentiation, yet there is little known about its regulation in the retina. We now report that the proneural bHLH (basic helix-loop-helix) transcription factor, NeuroD1, is necessary for sustained expression of TRβ2 in immature cone photoreceptors. Mice deficient in NeuroD1 develop an opsin phenotype virtually identical with that of TRβ2-deficient mice: all cones express S-opsin, and none expresses M-opsin. The introduction of NeuroD1 into embryonic retinal explants from NeuroD1−/−mice restores TRβ2 expression. NeuroD1 binds an E-box in the intron control region of the TRβ2 gene that mediates cone-specific expression, suggesting that NeuroD1 is a critical contributory factor to the expression of TRβ2 in cones. These results thus connect the proneural pathway with opsin selection to ensure correct cone patterning during retinal development.

Keywords

Mice, Knockout, Chromatin Immunoprecipitation, Green Fluorescent Proteins, Rod Opsins, Gene Expression Regulation, Developmental, Electrophoretic Mobility Shift Assay, Thyroid Hormone Receptors beta, In Vitro Techniques, Embryo, Mammalian, Transfection, Retina, Mice, Bromodeoxyuridine, Tubulin, Basic Helix-Loop-Helix Transcription Factors, Animals, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%
hybrid