Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Experimental Physiol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Experimental Physiology
Article . 2002 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2002
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Expression of Sarco(endo)Plasmic Reticulum Ca2+‐Atpase Slow (SERCA2) Isoform in Regenerating Rat Soleus Skeletal Muscle Depends on Nerve Impulses

Authors: GERMINARIO, ELENA; ESPOSITO A; MIDRIO, MENOTTI; BETTO R; DANIELI, DANIELA;

Expression of Sarco(endo)Plasmic Reticulum Ca2+‐Atpase Slow (SERCA2) Isoform in Regenerating Rat Soleus Skeletal Muscle Depends on Nerve Impulses

Abstract

We have examined the influence of innervation on the expression of different isoforms of sarco(endo)plasmic reticulum Ca2+‐ATPase (SERCA) in regenerating rat slow twitch muscle. The process of degeneration/ regeneration was induced by injection of bupivacaine into rat soleus muscle under four different conditions: (1) in the presence of intact motor nerves, (2) after surgical denervation, (3) with nerve impulse conduction blocked by the Na+‐channel blocker tetrodotoxin (TTX), and (4) with the axoplasmic flow blocked by vinblastine. Expression of SERCA isoforms was visualized by immunohistochemical and Western blot analysis. In regenerating innervated muscle, SERCA1, the isoform normally expressed in fast twitch fibres, was present after 5 days and was then progressively replaced by SERCA2, the isoform typical of slow twitch fibres. The maximum Ca2+ uptake, measured in single skinned fibres regenerating for 10‐21 days, was similar to that of slow adult fibres and significantly lower than that of fast adult fibres. Denervation or TTX treatment prevented the expression of the SERCA2 isoform. Conversely, vinblastine did not affect the expression of SERCA isoforms. These data indicate that nerve impulses play a determinant role in the expression of the SERCA2 isoform.

Keywords

Motor Neurons, Calcium-Transporting ATPases, Tetrodotoxin, Vinblastine, Antineoplastic Agents, Phytogenic, Axonal Transport, Sciatic Nerve, Muscle Denervation, Rats, Sarcoplasmic Reticulum Calcium-Transporting ATPases, Muscle Fibers, Slow-Twitch, Animals, Regeneration, Calcium, denervation; tetrodoxin; vinblastine, Anesthetics, Local, Rats, Wistar, Muscle, Skeletal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Average
Average
gold