Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Clinical ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Clinical Oncology
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Anthracycline-Related Cardiomyopathy After Childhood Cancer: Role of Polymorphisms in Carbonyl Reductase Genes—A Report From the Children's Oncology Group

Authors: Javier G, Blanco; Can-Lan, Sun; Wendy, Landier; Lu, Chen; Diego, Esparza-Duran; Wendy, Leisenring; Allison, Mays; +9 Authors

Anthracycline-Related Cardiomyopathy After Childhood Cancer: Role of Polymorphisms in Carbonyl Reductase Genes—A Report From the Children's Oncology Group

Abstract

Purpose Carbonyl reductases (CBRs) catalyze reduction of anthracyclines to cardiotoxic alcohol metabolites. Polymorphisms in CBR1 and CBR3 influence synthesis of these metabolites. We examined whether single nucleotide polymorphisms in CBR1 (CBR1 1096G>A) and/or CBR3 (CBR3 V244M) modified the dose-dependent risk of anthracycline-related cardiomyopathy in childhood cancer survivors. Patients and Methods One hundred seventy survivors with cardiomyopathy (patient cases) were compared with 317 survivors with no cardiomyopathy (controls; matched on cancer diagnosis, year of diagnosis, length of follow-up, and race/ethnicity) using conditional logistic regression techniques. Results A dose-dependent association was observed between cumulative anthracycline exposure and cardiomyopathy risk (0 mg/m2: reference; 1 to 100 mg/m2: odds ratio [OR], 1.65; 101 to 150 mg/m2: OR, 3.85; 151 to 200 mg/m2: OR, 3.69; 201 to 250 mg/m2: OR, 7.23; 251 to 300 mg/m2: OR, 23.47; > 300 mg/m2: OR, 27.59; Ptrend < .001). Among individuals carrying the variant A allele (CBR1:GA/AA and/or CBR3:GA/AA), exposure to low- to moderate-dose anthracyclines (1 to 250 mg/m2) did not increase the risk of cardiomyopathy. Among individuals with CBR3 V244M homozygous G genotypes (CBR3:GG), exposure to low- to moderate-dose anthracyclines increased cardiomyopathy risk when compared with individuals with CBR3:GA/AA genotypes unexposed to anthracyclines (OR, 5.48; P = .003), as well as exposed to low- to moderate-dose anthracyclines (OR, 3.30; P = .006). High-dose anthracyclines (> 250 mg/m2) were associated with increased cardiomyopathy risk, irrespective of CBR genotype status. Conclusion This study demonstrates increased anthracycline-related cardiomyopathy risk at doses as low as 101 to 150 mg/m2. Homozygosis for G allele in CBR3 contributes to increased cardiomyopathy risk associated with low- to moderate-dose anthracyclines, such that there seems to be no safe dose for patients homozygous for the CBR3 V244M G allele. These results suggest a need for targeted intervention for those at increased risk of cardiomyopathy.

Related Organizations
Keywords

Male, Antibiotics, Antineoplastic, Chi-Square Distribution, Adolescent, Dose-Response Relationship, Drug, Homozygote, Age Factors, Infant, Newborn, Infant, Alcohol Oxidoreductases, Logistic Models, Case-Control Studies, Child, Preschool, Humans, Anthracyclines, Female, Genetic Predisposition to Disease, Cardiomyopathies, Child, Biotransformation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    318
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
318
Top 1%
Top 1%
Top 1%
bronze
Related to Research communities
Cancer Research