Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diabetesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetes
Article . 2010 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetes
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2010
Data sources: PubMed Central
versions View all 3 versions

Mammalian Target of Rapamycin Complex 1 Suppresses Lipolysis, Stimulates Lipogenesis, and Promotes Fat Storage

Authors: Jun Shi; Partha Chakrabarti; Taylor English; Konstantin V. Kandror; Cynthia M. Smas;

Mammalian Target of Rapamycin Complex 1 Suppresses Lipolysis, Stimulates Lipogenesis, and Promotes Fat Storage

Abstract

OBJECTIVE In metazoans, target of rapamycin complex 1 (TORC1) plays the key role in nutrient- and hormone-dependent control of metabolism. However, the role of TORC1 in regulation of triglyceride storage and metabolism remains largely unknown. RESEARCH DESIGN AND METHODS In this study, we analyzed the effect of activation and inhibition of the mammalian TORC1 (mTORC1) signaling pathway on the expression of adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), lipolysis, lipogenesis, and lipid storage in different mammalian cells. RESULTS Activation of mTORC1 signaling in 3T3-L1 adipocytes by ectopic expression of Rheb inhibits expression of ATGL and HSL at the level of transcription, suppresses lipolysis, increases de novo lipogenesis, and promotes intracellular accumulation of triglycerides. Inhibition of mTORC1 signaling by rapamycin or by knockdown of raptor stimulates lipolysis primarily via activation of ATGL expression. Analogous results have been obtained in C2C12 myoblasts and mouse embryonic fibroblasts with genetic ablation of tuberous sclerosis 2 (TSC2) gene. Overexpression of ATGL in these cells antagonized the lipogenic effect of TSC2 knockout. CONCLUSIONS Our findings demonstrate that mTORC1 promotes fat storage in mammalian cells by suppression of lipolysis and stimulation of de novo lipogenesis.

Keywords

Mice, Knockout, Base Sequence, Lipolysis, Cell Differentiation, 3T3 Cells, Lipase, Transfection, Polymerase Chain Reaction, Mice, Oxygen Consumption, Adipose Tissue, Genes, Reporter, Adipocytes, Animals, RNA, Original Article, RNA, Small Interfering, Azo Compounds, Cells, Cultured, Triglycerides, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    207
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
207
Top 1%
Top 10%
Top 1%
Green
hybrid