Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The EMBO Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The EMBO Journal
Article . 1996 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
The EMBO Journal
Article . 1996
versions View all 2 versions

Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains.

Authors: D C, Chan; M T, Bedford; P, Leder;

Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains.

Abstract

The formins, proteins involved in murine limb and kidney development, contain a proline-rich region that matches consensus sequences for Src homology 3 (SH3) ligands. To identify proteins that interact with formins, we used this proline-rich region to screen mouse limb bud expression libraries for formin binding proteins (FBPs). As expected, we found one class of FBPs that contains SH3 domains, including two novel members of this class. In addition, however, we also found a novel class of FBPs that contains one or two copies of a 26 amino acid homology region that has been recently termed the WWP or WW motif. We demonstrate that WWP/WW domains as short as 26 amino acids can act as modular protein-binding interfaces that bind with high affinity to proline-rich sequences that are similar and, in some cases, identical to SH3 ligands. Furthermore, we find that the WWP/WW domain can compete with the Abl SH3 domain in binding a proline-rich peptide present in formin. Our results suggest that these novel protein interaction domains can perform functions similar to those of SH3 domains and, thus, might regulate SH3 interactions with target proteins through competitive binding.

Related Organizations
Keywords

Fetal Proteins, Binding Sites, DNA, Complementary, Base Sequence, Proline, GTPase-Activating Proteins, Microfilament Proteins, Molecular Sequence Data, Formins, Nuclear Proteins, Extremities, Fatty Acid-Binding Proteins, Mice, Proto-Oncogene Proteins, Animals, Humans, Amino Acid Sequence, Carrier Proteins, Peptides, Gene Library

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    205
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
205
Top 10%
Top 1%
Top 1%
bronze