Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Biological Macromolecules
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Retinol and retinoic acid bind human serum albumin: Stability and structural features

Authors: C. Ragi; R. Sedaghat-Herati; Heidar-Ali Tajmir-Riahi; Surat Hotchandani; C. N. N'soukpoé-Kossi;

Retinol and retinoic acid bind human serum albumin: Stability and structural features

Abstract

Vitamin A components, retinol and retinoic acid, are fat-soluble micronutrients and critical for many biological processes, including vision, reproduction, growth, and regulation of cell proliferation and differentiation. The cellular uptake of Vitamin A is through specific interaction of a plasma membrane receptor with serum retinol-binding protein. Human serum albumin (HSA), as a transport protein, is the major target of several micronutrients in vivo. The aim of present study was to examine the interaction of retinol and retinoic acid with human serum albumin in aqueous solution at physiological conditions using constant protein concentration and various retinoid contents. FTIR, UV-vis, CD and fluorescence spectroscopic methods were used to determine retinoid binding mode, the binding constant and the effects of complexation on protein secondary structure. Structural analysis showed that retinol and retinoic acid bind non-specifically (H-bonding) via protein polar groups with binding constants of K(ret)=1.32 (+/-0.30)x10(5)M(-1) and K(retac)=3.33 (+/-0.35)x10(5)M(-1). The protein secondary structure showed no alterations at low retinoid concentrations (0.125 mM), whereas at high retinoid content (1mM), an increase of alpha-helix from 55% (free HSA) to 60% and a decrease of beta-sheet from 22% (free HSA) to 18% occurred in the retinoid-HSA complexes. The results point to a partial stabilization of protein secondary structure at high retinoid content.

Keywords

Tretinoin, Protein Structure, Secondary, Kinetics, Retinoids, Spectrometry, Fluorescence, Spectroscopy, Fourier Transform Infrared, Humans, Thermodynamics, Spectrophotometry, Ultraviolet, Vitamin A, Serum Albumin, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    121
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
121
Top 10%
Top 10%
Top 10%