5α-reduced C21 steroids are substrates for human cytochrome P450c17
pmid: 14522586
5α-reduced C21 steroids are substrates for human cytochrome P450c17
The 5alpha-reduction of testosterone in target tissues is a key step in androgen physiology; however, 5alpha-reduced C(19) steroids are sometimes synthesized in testis via a pathway that does not involve testosterone as an intermediate. We studied the metabolism of 5alpha-reduced C(21) steroids by human cytochrome P450c17 (hCYP17), the enzyme responsible for conversion of C(21) steroids to C(19) steroids via its 17alpha-hydroxylase and 17,20-lyase activities. hCYP17 17alpha-hydroxylates 5alpha-pregnan-3,20-dione, but little androstanedione is formed by 17,20-lyase activity. hCYP17 also 17alpha-hydroxylates 5alpha-pregnan-3alpha-ol-20-one and the 5alpha-pregnan-3alpha,17alpha-diol-20-one intermediate is rapidly converted to androsterone by 17,20-lyase activity. Furthermore, 5alpha-pregnan-3alpha,17alpha-diol-20-one is a better substrate for the 17,20-lyase reaction than the preferred substrate 17alpha-hydroxypregnenolone and cytochrome b(5) stimulates androsterone formation only 3-fold. Both 5alpha-pregnan-3alpha-ol-20-one and 5alpha-pregnan-3alpha,17alpha-diol-20-one bind to hCYP17 with higher affinity than does progesterone. We conclude that 5alpha-reduced, 3alpha-hydroxy-C(21) steroids are excellent, high-affinity substrates for hCYP17. The brisk metabolism of 5alpha-pregnan-3alpha,17alpha-diol-20-one to androsterone by CYP17 explains how, when 5alpha-reductases are present, the testis can produce C(19) steroids androsterone and androstanediol from 17alpha-hydroxyprogesterone without the intermediacy of androstenedione and testosterone.
- The University of Texas Southwestern Medical Center United States
Recombinant Fusion Proteins, 5-alpha-Dihydroprogesterone, Steroid 17-alpha-Hydroxylase, Pregnanolone, Saccharomyces cerevisiae, Hydroxylation, Substrate Specificity, Androgens, Humans, Steroids, Gonads, Protein Binding
Recombinant Fusion Proteins, 5-alpha-Dihydroprogesterone, Steroid 17-alpha-Hydroxylase, Pregnanolone, Saccharomyces cerevisiae, Hydroxylation, Substrate Specificity, Androgens, Humans, Steroids, Gonads, Protein Binding
4 Research products, page 1 of 1
- 2003IsAmongTopNSimilarDocuments
- 2005IsAmongTopNSimilarDocuments
- 2002IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).88 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
