Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://www.cell.com/article/S0...
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Structure
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Structure
Article . 2018 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
https://doi.org/10.1101/306589...
Article . 2018 . Peer-reviewed
Data sources: Crossref
Structure
Article . 2019
versions View all 4 versions

Dynamics of Allosteric Transitions in Dynein

Authors: Goldtzvik, Yonathan; Mugnai, Mauro L.; Thirumalai, D.;
Abstract

1SummaryCytoplasmic Dynein, a motor with an unusual architecture made up of a motor domain belonging to the AAA+ family, walks on microtubule towards the minus end. Prompted by the availability of structures in different nucleotide states, we performed simulations based on a new coarse-grained model to illustrate the molecular details of the dynamics of allosteric transitions in the motor. The simulations show that binding of ATP results in the closure of the cleft between the AAA1 and AAA2, which in turn triggers conformational changes in the rest of the motor domain, thus poising dynein in the pre-power stroke state. Interactions with the microtubule, which are modeled implicitly, substantially enhances the rate of ADP release, and formation of the post-power stroke state. The dynamics associated with the key mechanical element, the linker (LN) domain, which changes from a straight to a bent state and vice versa, are highly heterogeneous suggestive of multiple routes in the pre power stroke to post power stroke transition. We show that persistent interactions between the LN and the insert loops in the AAA2 domain prevent the formation of pre-power stroke state when ATP is bound to AAA3, thus locking dynein in a non-functional repressed state. Motility in such a state may be rescued by applying mechanical force to the LN domain. Taken together, these results show how the intricate signaling dynamics within the motor domain facilitate the stepping of dynein.

Related Organizations
Keywords

Cytoplasmic Dyneins, Models, Molecular, Adenosine Triphosphate, Allosteric Regulation, Protein Domains, Protein Conformation, Animals, Humans, Crystallography, X-Ray

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
hybrid