Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Ameri...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the American Society for Mass Spectrometry
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Determining the Effect of Catechins on SOD1 Conformation and Aggregation by Ion Mobility Mass Spectrometry Combined with Optical Spectroscopy

Authors: Bing, Zhao; Xiaoyu, Zhuang; Zifeng, Pi; Shu, Liu; Zhiqiang, Liu; Fengrui, Song;

Determining the Effect of Catechins on SOD1 Conformation and Aggregation by Ion Mobility Mass Spectrometry Combined with Optical Spectroscopy

Abstract

The aggregation of Cu,Zn-superoxide dismutase (SOD1) plays an important role in the etiology of amyotrophic lateral sclerosis (ALS). For the disruption of ALS progression, discovering new drugs or compounds that can prevent SOD1 aggregation is important. In this study, ESI-MS was used to investigate the interaction of catechins and SOD1. The noncovalent complex of catechins that interact with SOD1 was found and retained in the gas phase under native ESI-MS condition. The conformation changes of SOD1 after binding with catechins were also explored via traveling wave ion mobility (IM) spectrometry. Epigallocatechin gallate (EGCG) can stabilize SOD1 conformation against unfolding in three catechins. To further evaluate the efficacy of EGCG, we monitored the fluorescence changes of dimer E2,E2,-SOD1(apo-SOD1, E:empty) with and without ligands under denaturation conditions, and found that EGCG can inhibit apo-SOD1 aggregation. In addition, the circular dichroism spectra of the samples showed that EGCG can decrease the β-sheet content of SOD1, which can produce aggregates. These results indicated that orthogonal separation dimension in the gas-phase IM coupled with ESI-MS (ESI-IM-MS) can potentially provide insight into the interaction between SOD1 and small molecules. The advantage is that it dramatically decreases the analysis time. Meantime, optical spectroscopy techniques can be used to confirm ESI-IM-MS results. Graphical Abstract ᅟ.

Related Organizations
Keywords

Spectrometry, Fluorescence, Protein Conformation, Superoxide Dismutase, Tandem Mass Spectrometry, Circular Dichroism, Ion Mobility Spectrometry, Animals, Cattle, Catechin, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%