Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2002
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2002 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions

The Dlx5 Homeobox Gene Is Essential for Vestibular Morphogenesis in the Mouse Embryo through a BMP4-Mediated Pathway

Authors: Merlo, Giorgio R; Paleari, Laura; Mantero, Stefano; Zerega, Barbara; Adamska, Maja; Rinkwitz, Silke; Bober, Eva; +1 Authors

The Dlx5 Homeobox Gene Is Essential for Vestibular Morphogenesis in the Mouse Embryo through a BMP4-Mediated Pathway

Abstract

In the mouse embryo, Dlx5 is expressed in the otic placode and vesicle, and later in the semicircular canals of the inner ear. In mice homozygous for a null Dlx5/LacZ allele, a severe dysmorphogenesis of the vestibular region is observed, characterized by the absence of semicircular canals and the shortening of the endolymphatic duct. Minor defects are observed in the cochlea, although Dlx5 is not expressed in this region. Cristae formation is severely impaired; however, sensory epithelial cells, recognized by calretinin immunostaining, are present in the vestibular epithelium of Dlx5(-/-) mice. The maculae of utricle and saccule are present but cells appear sparse and misplaced. The abnormal morphogenesis of the semicircular canals is accompanied by an altered distribution of proliferating and apoptotic cells. In the Dlx5(-/-) embryos, no changes in expression of Nkx5.1(Hmx3), Pax2, and Lfng have been seen, while expression of bone morphogenetic protein-4 (Bmp4) was drastically reduced. Notably, BMP4 has been shown to play a fundamental role in vestibular morphogenesis of the chick embryo. We propose that development of the semicircular canals and the vestibular inner ear requires the independent control of several homeobox genes, which appear to exert their function via tight regulation of BPM4 expression and the regional organization of cell differentiation, proliferation, and apoptosis.

Keywords

inner ear, Heterozygote, Dlx, Apoptosis, Bone Morphogenetic Protein 4, Avian Proteins, Mice, homeobox gene, [SDV.BDD] Life Sciences [q-bio]/Development Biology, In Situ Nick-End Labeling, Animals, Drosophila Proteins, Molecular Biology, transcription factor, Alleles, In Situ Hybridization, Homeodomain Proteins, Homozygote, apoptosis, Glycosyltransferases, Cell Differentiation, Cell Biology, Cochlea, DNA-Binding Proteins, Calbindin 2, Ear, Inner, Bone Morphogenetic Proteins, bone morphogenetic protein-4, Cell Division, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 10%
Top 10%
Top 10%
hybrid