Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2005
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Current Biology
Article . 2006
versions View all 4 versions

The PHD Finger/Bromodomain of NoRC Interacts with Acetylated Histone H4K16 and Is Sufficient for rDNA Silencing

Authors: Zhou, Yonggang; Grummt, Ingrid;

The PHD Finger/Bromodomain of NoRC Interacts with Acetylated Histone H4K16 and Is Sufficient for rDNA Silencing

Abstract

The SNF2h-containing chromatin-remodeling complex NoRC is responsible for silencing a fraction of mammalian rRNA genes (rDNA). NoRC silences transcription by establishing heterochromatic features-including DNA methylation, hypoacetylation of histone H4, and methylation of H3K9-at the rDNA promoter []. We have investigated the mechanism of NoRC-mediated rDNA silencing and show that binding of the bromodomain of TIP5, the large subunit of NoRC, to acetylated nucleosomes is a prerequisite for NoRC function. A point mutation within the bromodomain impairs the association of NoRC with chromatin, prevents heterochromatin formation, and abolishes transcriptional repression. Moreover, the association of NoRC with chromatin requires acetylation of histone H4 at lysine 16 (acH4K16), and binding to acH4K16 is required for subsequent deacetylation of H4K5, H4K8, and H4K12, indicating that acetylation of H4K16 plays an active role in NoRC-mediated heterochromatin formation. The bromodomain cooperates with an adjacent PHD finger to recruit HDAC1, DNMT1, DNMT3, and SNF2h to rDNA. If specifically targeted to the rDNA promoter, the PHD finger/bromodomain is capable of establishing heterochromatic features and rDNA silencing. Thus, the PHD finger/bromodomain represents an autonomous unit that binds to acH4K16 and coordinates the chain of events that establish the repressed state of rDNA.

Related Organizations
Keywords

Adenosine Triphosphatases, DNA (Cytosine-5-)-Methyltransferase 1, Chromatin Immunoprecipitation, Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), Chromosomal Proteins, Non-Histone, Blotting, Western, Acetylation, Histone Deacetylase 1, DNA Methylation, Chromatin Assembly and Disassembly, DNA, Ribosomal, Histone Deacetylases, Histones, Mice, Heterochromatin, NIH 3T3 Cells, Animals, Point Mutation, DNA (Cytosine-5-)-Methyltransferases, Gene Silencing, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    129
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
129
Top 10%
Top 10%
Top 10%
hybrid