Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Gut Microbesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Gut Microbes
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Gut Microbes
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://europepmc.org/articles...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Gut Microbes
Article . 2022
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Gut Microbes
Article . 2021
Data sources: DOAJ
https://doi.org/10.1101/2021.0...
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions

The interaction of enteric bacterial effectors with the host engulfment pathway control innate immune responses

Authors: Ibrahim M Sayed; Stella-Rita Ibeawuchi; Dominique Lie; Mahitha Shree Anandachar; Rama Pranadinata; Manuela Raffatellu; Soumita Das;

The interaction of enteric bacterial effectors with the host engulfment pathway control innate immune responses

Abstract

AbstractBackgroundHost engulfment protein ELMO1 generates intestinal inflammation following internalization of enteric bacteria. In Shigella, bacterial effector IpgB1 interacts with ELMO1 and promotes bacterial invasion. IpgB1 belongs to the WxxxE effector family, a motif found in several effector of enteric pathogens. Here, we have studied the role of WxxxE effectors, with emphasis on Salmonella SifA and whether it interacts with ELMO1 to regulate inflammation.MethodologyIn-silico-analysis of WxxxE effectors was performed using BLAST search and Clustal W program. The interaction of ELMO1 with SifA was assessed by GST pulldown assay and co-immunoprecipitation. ELMO1 knock-out mice, and ELMO1-depleted murine macrophage J774 cell lines were challenged with WT and SifA mutant Salmonella. Bacterial effectors containing the WxxxE motif were transfected in WT and ELMO1-depleted J774 cells to assess the inflammatory cytokines.ResultsELMO1 generates differential pro-inflammatory cytokines between pathogenic and non-pathogenic bacteria. WxxxE motif is present in pathogens and in the TIR domain of host proteins. The C-terminal part of ELMO1 interacts with SifA where WxxxE motif is important for interaction. ELMO1-SifA interaction affects the bacterial colonization, dissemination, and inflammatory cytokines in vivo. Moreover, ELMO1-SifA interaction increases TNF-α and IL-6 production from the macrophage cell line and is associated with enhanced Rac1 activity. ELMO1 also interacts with WxxxE effectors IpgB1, IpgB2, and Map, and induces inflammation after challenge with microbe or microbial ligand.ConclusionELMO1 generates a differential response through interaction with the WxxxE motif which is absent in commensals. ELMO1-WxxxE interaction plays a role in bacterial pathogenesis and induction of inflammatory response.HighlightsELMO1 generates a differential immune response between enteric pathogens and commensals.Enteric bacterial effectors containing WxxxE signature motif interact with ELMO1.The WxxxE effector of Salmonella SifA interacts with the C-terminal part of ELMO1.ELMO1-SifA interaction increases the inflammatory response in vivo and in vitro.

Keywords

commensals, Salmonella typhimurium, Interleukin-6, Tumor Necrosis Factor-alpha, bacterial effectors, RC799-869, Diseases of the digestive system. Gastroenterology, Immunity, Innate, elmo1, Gastrointestinal Microbiome, Mice, wxxxe motif, Bacterial Proteins, Host-Pathogen Interactions, Salmonella Infections, innate immune response, Animals, Humans, Research Paper, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
gold