Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationenserver ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Neuroscience
Article . 2006
versions View all 3 versions

α-Neurexins are required for efficient transmitter release and synaptic homeostasis at the mouse neuromuscular junction

Authors: M.S. Sons; Mohiuddin Ahmad; H. Steffens; Weiqi Zhang; Nicola Strenzke; Jaap J. Plomp; Tobias Moser; +6 Authors

α-Neurexins are required for efficient transmitter release and synaptic homeostasis at the mouse neuromuscular junction

Abstract

Neurotransmission at chemical synapses of the brain involves alpha-neurexins, neuron-specific cell-surface molecules that are encoded by three genes in mammals. Deletion of alpha-neurexins in mice previously demonstrated an essential function, leading to early postnatal death of many double-knockout mice and all triple mutants. Neurotransmitter release at central synapses of newborn knockouts was severely reduced, a function of alpha-neurexins that requires their extracellular sequences. Here, we investigated the role of alpha-neurexins at neuromuscular junctions, presynaptic terminals that lack a neuronal postsynaptic partner, addressing an important question because the function of neurexins was hypothesized to involve cell-adhesion complexes between neurons. Using systems physiology, morphological analyses and electrophysiological recordings, we show that quantal content, i.e. the number of acetylcholine quanta released per nerve impulse from motor nerve terminals, and frequency of spontaneous miniature endplate potentials at the slow-twitch soleus muscle are reduced in adult alpha-neurexin double-knockouts, consistent with earlier data on central synapses. However, the same parameters at diaphragm muscle neuromuscular junctions showed no difference in basal neurotransmission. To reconcile these observations, we tested the capability of control and alpha-neurexin-deficient diaphragm neuromuscular junctions to compensate for an experimental reduction of postsynaptic acetylcholine receptors by a compensatory increase of presynaptic release: Knockout neuromuscular junctions produced significantly less upregulation of quantal content than synapses from control mice. Our data suggest that alpha-neurexins are required for efficient neurotransmitter release at neuromuscular junctions, and that they may perform a role in the molecular mechanism of synaptic homeostasis at these peripheral synapses.

Keywords

Mice, Knockout, Diaphragm, Neuromuscular Junction, Nerve Tissue Proteins, Synaptic Transmission, Electrophysiology, Disease Models, Animal, Mice, Myasthenia Gravis, Peripheral Nervous System, Synapses, Animals, Homeostasis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
Green