Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Organic Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Organic Letters
Article . 2017 . Peer-reviewed
Data sources: Crossref
Organic Letters
Article . 2018
versions View all 3 versions

X-ray Crystallographic Structure of a Compact Dodecamer from a Peptide Derived from Aβ16–36

Authors: Patrick J. Salveson; Ryan K. Spencer; Adam G. Kreutzer; James S. Nowick;

X-ray Crystallographic Structure of a Compact Dodecamer from a Peptide Derived from Aβ16–36

Abstract

The assembly of the β-amyloid peptide, Aβ, into soluble oligomers is associated with neurodegeneration in Alzheimer's disease. The Aβ oligomers are thought to be composed of β-hairpins. Here, the effect of shifting the residue pairing of the β-hairpins on the structures of the oligomers that form is explored through X-ray crystallography. Three residue pairings were investigated using constrained macrocyclic β-hairpins in which Aβ30-36 is juxtaposed with Aβ17-23, Aβ16-22, and Aβ15-21. The Aβ16-22-Aβ30-36 pairing forms a compact ball-shaped dodecamer composed of fused triangular trimers. This dodecamer may help explain the structures of the trimers and dodecamers formed by full-length Aβ.

Country
United States
Keywords

Models, Molecular, Crystallography, Amyloid beta-Peptides, Molecular Structure, X-Rays, Molecular, Crystallography, X-Ray, Peptide Fragments, Models, X-Ray

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
Green
bronze