Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1996 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Distinct Tyrosine Residues within the Interleukin-2 Receptor β Chain Drive Signal Transduction Specificity, Redundancy, and Diversity

Authors: S L, Gaffen; S Y, Lai; M, Ha; X, Liu; L, Hennighausen; W C, Greene; M A, Goldsmith;

Distinct Tyrosine Residues within the Interleukin-2 Receptor β Chain Drive Signal Transduction Specificity, Redundancy, and Diversity

Abstract

To explore the basis for interleukin (IL)-2 receptor (IL-2R) signaling specificity, the roles of tyrosine-based sequences located within the cytoplasmic tails of the beta and gammac chains were examined in the murine helper T cell line HT-2. Activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, cellular proliferation, and the induction of various genes were monitored. All four of the cytoplasmic tyrosine residues as well as the distal portion of the gammac proved dispensable for the entire spectrum of IL-2R signaling responses studied. Conversely, select tyrosine residues within the beta chain were essential and differentially required for various signaling events. Specifically, activation of c-fos gene expression was found to occur exclusively through the most membrane proximal tyrosine, Tyr-338, whereas proliferation and the activation of STAT-5 were induced either through Tyr-338 or through the two C-terminal tyrosine residues, Tyr-392 and Tyr-510. These tyrosine residues mediated the induction of two different STAT-5 isoforms, which were found to form heterodimers upon receptor activation. In contrast to the tyrosine dependence of c-fos and STAT-5 induction, bcl-2 gene induction proceeded independently of all IL-2Rbeta tyrosine residues. Thus, the tyrosine-based modules present within the IL-2Rbeta cytoplasmic tail play a critical role in IL-2R signaling, mediating specificity, redundancy, and multifunctionality.

Keywords

Molecular Sequence Data, Janus Kinase 3, Receptors, Interleukin-2, Janus Kinase 1, Protein-Tyrosine Kinases, Milk Proteins, Cell Line, DNA-Binding Proteins, Enzyme Activation, Mice, Receptors, Erythropoietin, STAT5 Transcription Factor, Trans-Activators, Animals, Tyrosine, Amino Acid Sequence, Erythropoietin, Cell Division, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Average
Top 10%
Top 1%
gold