Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Protein & Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Protein & Cell
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Protein & Cell
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Crystal structure and functional implication of the RUN domain of human NESCA

Authors: Qifan, Sun; Chuanhui, Han; Lan, Liu; Yizhi, Wang; Hongyu, Deng; Lin, Bai; Tao, Jiang;

Crystal structure and functional implication of the RUN domain of human NESCA

Abstract

NESCA, a newly discovered signaling adapter protein in the NGF-pathway, contains a RUN domain at its N-terminus. Here we report the crystal structure of the NESCA RUN domain determined at 2.0-Å resolution. The overall fold of the NESCA RUN domain comprises nine helices, resembling the RUN domain of RPIPx and the RUN1 domain of Rab6IP1. However, compared to the other RUN domains, the RUN domain of NESCA has significantly different surface electrostatic distributions at the putative GTPase-interacting interface. We demonstrate that the RUN domain of NESCA can bind H-Ras, a downstream signaling molecule of TrkA, with high affinity. Moreover, NESCA RUN can directly interact with TrkA. These results provide new insights into how NESCA participates in the NGF-TrkA signaling pathway.

Related Organizations
Keywords

Models, Molecular, Binding Sites, Sequence Homology, Amino Acid, Molecular Sequence Data, Gene Expression, Oncogene Protein p21(ras), Crystallography, X-Ray, Recombinant Proteins, Protein Structure, Tertiary, rab GTP-Binding Proteins, Nerve Growth Factor, Guanine Nucleotide Exchange Factors, Humans, Amino Acid Sequence, Receptor, trkA, Adaptor Proteins, Signal Transducing, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
gold