Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ mBioarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
mBio
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
mBio
Article . 2023
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
mBio
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/2023.0...
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 7 versions

Sas3-mediated histone acetylation regulates effector gene activation in a fungal plant pathogen

Authors: Marta Suarez-Fernandez; Rocío Álvarez-Aragón; Ana Pastor-Mediavilla; Alejandro Maestre-Guillén; Ivan del Olmo; Agustina De Francesco; Lukas Meile; +1 Authors

Sas3-mediated histone acetylation regulates effector gene activation in a fungal plant pathogen

Abstract

ABSTRACTEffector proteins are secreted by plant pathogens to enable host colonization. Typically, effector genes are tightly regulated, have very low expression levels in axenic conditions, and are strongly induced during host colonization. Chromatin remodeling contributes to the activation of effector genesin plantaby still poorly known mechanisms. In this work we investigated the role of histone acetylation in effector gene derepression in plant pathogens. We usedZymoseptoria tritici, a major pathogen of wheat, as a model to determine the role of lysine acetyltransferases (KATs) in plant infection. We showed that effector gene activation is associated with chromatin remodeling, featuring increased acetylation levels of histone H3 lysine 9 (H3K9) and 14 (H3K14) in effector loci. We functionally characterized the role ofZ. triticiKATs and demonstrated their distinct contributions to growth, development, and infection. Sas3 is required for host colonization and pycnidia production, while Gcn5 has a major role in pycnidia production. Furthermore, we demonstrated that Sas3 is involved in acetylation of H3K9 and H3K14 in effector loci and in effector gene activation during plant infection. We propose that Sas3-mediated histone acetylation is required for spatiotemporal activation of effector genes and virulence ofZ. tritici.IMPORTANCEPathogen infections require the production of effectors that enable host colonization. Effectors have diverse functions and are only expressed at certain stages of the infection cycle. Thus, effector genes are tightly regulated by several mechanisms, including chromatin remodeling. Here, we investigate the role of histone acetylation in effector gene activation in the fungal wheat pathogenZymoseptoria tritici. We demonstrated that lysine acetyltransferases (KATs) are essential for the spatiotemporal regulation of effector genes. We show that two KATs, Sas3 and Gcn5, are involved in leaf symptom development and pycnidia formation. Importantly, our results indicated that Sas3 controls histone acetylation of effector loci and is a regulator of effector gene activation during stomatal penetration. Overall, our work demonstrates the key role of histone acetylation in regulating gene expression associated with plant infection.

Keywords

Transcriptional Activation, effector gene activation, histone acetylation, Acetylation, Chromatin Assembly and Disassembly, Microbiology, QR1-502, Sas3, chromatin remodeling, Chromatin remodeling, Histones, Effector gene activation, Histone acetylation, wheat, Zymoseptoria tritici, Wheat, Research Article, Plant Diseases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 55
    download downloads 105
  • 55
    views
    105
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
11
Top 10%
Average
Top 10%
55
105
Green
gold