Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal Of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal Of Pathology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal Of Pathology
Article . 2011 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions

Placental Vasculogenesis Is Regulated by Keratin-Mediated Hyperoxia in Murine Decidual Tissues

Authors: Kroger, Cornelia; Vijayaraj, Preethi; Reuter, Ursula; Windoffer, Reinhard; Simmons, David; Heukamp, Lukas; Leube, Rudolf; +1 Authors

Placental Vasculogenesis Is Regulated by Keratin-Mediated Hyperoxia in Murine Decidual Tissues

Abstract

The mammalian placenta represents the interface between maternal and embryonic tissues and provides nutrients and gas exchange during embryo growth. Recently, keratin intermediate filament proteins were found to regulate embryo growth upstream of the mammalian target of rapamycin pathway through glucose transporter relocalization and to contribute to yolk sac vasculogenesis through altered bone morphogenetic protein 4 signaling. Whether keratins have vital functions in extraembryonic tissues is not well understood. Here, we report that keratins are essential for placental function. In the absence of keratins, we find hyperoxia in the decidual tissue directly adjacent to the placenta, because of an increased maternal vasculature. Hyperoxia causes impaired vasculogenesis through defective hypoxia-inducible factor 1α and vascular endothelial growth factor signaling, resulting in invagination defects of fetal blood vessels into the chorion. In turn, the reduced labyrinth, together with impaired gas exchange between maternal and embryonic blood, led to increased hypoxia in keratin-deficient embryos. We provide evidence that keratin-positive trophoblast secretion of prolactin-like protein a (Prlpa) and placental growth factor (PlGF) during decidualization are altered in the absence of keratins, leading to increased infiltration of uterine natural killer cells into placental vicinity and increased vascularization of the maternal decidua. Our findings suggest that keratin mutations might mediate conditions leading to early pregnancy loss due to hyperoxia in the decidua.

Keywords

Placenta, 610, Gene Expression Regulation, Developmental, Mice, Transgenic, Chorion, Hyperoxia, Pregnancy Proteins, 2734 Pathology and Forensic Medicine, Mice, Microscopy, Fluorescence, Pregnancy, Mutation, Pathology, Decidua, Animals, Keratins, Cell Lineage, Female, In Situ Hybridization, Placenta Growth Factor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
hybrid