Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Reviews Molec...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Reviews Molecular Cell Biology
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions

The p53 family: guardians of maternal reproduction

Authors: Levine, AJ; Tomasini, R; Mckeon, FD; Mak, TW; MELINO, GENNARO;

The p53 family: guardians of maternal reproduction

Abstract

The p53 family of proteins consists of p53, p63 and p73, which are transcription factors that affect both cancer and development. It is now emerging that these proteins also regulate maternal reproduction. Whereas p63 is important for maturation of the egg, p73 ensures normal mitosis in the developing blastocyst. p53 subsequently regulates implantation of the embryo through transcriptional control of leukaemia inhibitory factor. Elucidating the cell biological basis of how these factors regulate female fertility may lead to new approaches to the control of human maternal reproduction.

Keywords

Male, Oocyte, Transcription Factor, DNA-Binding Protein, Knockout, Models, Biological, Mice, Models, Animals, Humans, Settore BIO/10 - BIOCHIMICA, Nuclear Protein, Mice, Knockout, Animal, Animals; Blastocyst; DNA-Binding Proteins; Female; Fertility; Humans; Male; Mice; Mice, Knockout; Models, Biological; Nuclear Proteins; Oocytes; Phosphoproteins; Reproduction; Trans-Activators; Transcription Factors; Tumor Suppressor Protein p53; Tumor Suppressor Proteins, Reproduction, Tumor Suppressor Proteins, Nuclear Proteins, Tumor Protein p73, Biological, Phosphoproteins, DNA-Binding Proteins, Blastocyst, Fertility, Trans-Activator, Phosphoprotein, Oocytes, Trans-Activators, Female, Tumor Suppressor Protein p53, Human, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    225
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
225
Top 1%
Top 10%
Top 1%