Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

mBET3 is required for the organization of the TRAPP complexes

Authors: Shekar, Menon; Huaqing, Cai; Hongyan, Lu; Gang, Dong; Yiying, Cai; Karin, Reinisch; Susan, Ferro-Novick;

mBET3 is required for the organization of the TRAPP complexes

Abstract

Large tethering complexes mediate the initial interaction of a transport vesicle with its target membrane. There are two forms of the multi-subunit tethering complex called TRAPP (TRAPPI and TRAPPII) that tether transport vesicles in different trafficking steps. Understanding TRAPP complex assembly and the protein-protein interactions among the subunits is an important step in elucidating the function of this tether. Here we have used several different approaches to study the protein-protein interactions among the subunits of the TRAPP complexes in both mammalian cells and yeast. Our studies have revealed that the low molecular weight subunits of TRAPP form two subcomplexes in vitro. One subcomplex contains mammalian BET3 (mBET3), mTRS31 and mTRS20, while mBET5 and mTRS23 form a second subcomplex. Furthermore, mBET3 directly interacts with mBET5 in vitro. Our findings also suggest that the TRAPPII-specific subunit, yTrs120p (yeast Trs120p), binds to the periphery of the TRAPPII complex. Although the non-essential TRAPP subunit yTrs33p interacts with yBet3p, yTrs33p is not required for TRAPP complex assembly. Together our findings indicate that BET3 plays an important role in the organization of the TRAPP complexes in both mammalian cells and yeast.

Related Organizations
Keywords

Mice, Binding Sites, Protein Interaction Mapping, Vesicular Transport Proteins, Animals, Membrane Proteins, Protein Binding, Protein Structure, Tertiary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Average