Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YUHSpace (Yonsei Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Death and Differentiation
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Cryopyrin and pyrin activate caspase-1, but not NF-κB, via ASC oligomerization

Authors: ZhiJia Zhang; Shun'ichiro Taniguchi; Pinaki Datta; Je-Wook Yu; Emad S. Alnemri; Ibrahimi I; Jianghong Wu; +2 Authors

Cryopyrin and pyrin activate caspase-1, but not NF-κB, via ASC oligomerization

Abstract

Mutations in cryopyrin and pyrin proteins are responsible for several autoinflammatory disorders in humans, suggesting that these proteins play important roles in regulating inflammation. Using a HEK293 cell-based reconstitution system that stably expresses ASC and procaspase-1 we demonstrated that neither cryopyrin nor pyrin or their corresponding disease-associated mutants could significantly activate NF-kappaB in this system. However, both cryopyrin and two disease-associated cryopyrin mutants induced ASC oligomerization and ASC-dependent caspase-1 activation, with the disease-associated mutants being more potent than the wild-type (WT) cryopyrin, because of increased self-oligomerization. Contrary to the proposed anti-inflammatory activity of WT pyrin, our results demonstrated that pyrin, like cryopyrin, can also assemble an inflammasome complex with ASC and procaspase-1 leading to ASC oligomerization, caspase-1 activation and interleukin-1beta processing. Thus, we propose that pyrin could function as a proinflammatory molecule.

Keywords

caspase-1, 610, ASC, Cell Line, inflammasome, pyrin, NLR Family, Pyrin Domain-Containing 3 Protein, Humans, Immunoprecipitation, NF-kB, Inflammation, Microscopy, Confocal, Caspase 1, NF-kappa B, Pyrin, cryopyrin, Protein Structure, Tertiary, CARD Signaling Adaptor Proteins, Enzyme Activation, Cytoskeletal Proteins, Gene Expression Regulation, inflammation, interleukin-1b, Mutation, Carrier Proteins, Baculoviridae

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    316
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
316
Top 1%
Top 1%
Top 1%
Green
bronze