Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Virologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Virology
Article . 2003 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Nuclear Entry of High-Risk Human Papillomavirus Type 16 E6 Oncoprotein Occurs via Several Pathways

Authors: Lucia G, Le Roux; Junona, Moroianu;

Nuclear Entry of High-Risk Human Papillomavirus Type 16 E6 Oncoprotein Occurs via Several Pathways

Abstract

ABSTRACT The E6 oncoprotein of high-risk human papillomavirus type 16 (HPV16) interacts with several nuclear transcription factors and coactivators in addition to cytoplasmic proteins, suggesting that nuclear import of HPV16 E6 plays a role in the cellular transformation process. In this study we have investigated the nuclear import pathways of HPV16 E6 in digitonin-permeabilized HeLa cells. We found that HPV16 E6 interacted with the karyopherin (Kap) α2 adapter and could enter the nucleus via a classical Kap α2β1-mediated pathway. Interestingly, HPV16 E6 also interacted, via its basic nuclear localization signal (NLS) located at the C terminus, with both Kap β1 and Kap β2 import receptors. Binding of RanGTP to these Kap βs inhibited their interaction with HPV16 E6 NLS. In agreement with these binding data, nuclear import of the HPV16 E6 oncoprotein in digitonin-permeabilized HeLa cells could be mediated by either Kap β1 or Kap β2. Nuclear import via these pathways required RanGDP and was independent of GTP hydrolysis by Ran. Significantly, an E6 R124G mutant had reduced nuclear import activity, and the E6 deletion mutant lacking 121 KKQR 124 was not imported into the nucleus. The data reveal that the HPV16 E6 oncoprotein interacts via its C-terminal NLS with several karyopherins and exploits these interactions to enter the nucleus of host cells via multiple pathways.

Related Organizations
Keywords

Cell Nucleus, alpha Karyopherins, Nuclear Localization Signals, Active Transport, Cell Nucleus, Oncogene Proteins, Viral, Karyopherins, beta Karyopherins, Repressor Proteins, Humans, Papillomaviridae, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
gold