Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2012 . Peer-reviewed
Data sources: DIGITAL.CSIC
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Cell Research
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions

C3G mediated suppression of malignant transformation involves activation of PP2A phosphatases at the subcortical actin cytoskeleton

Authors: Martín-Encabo, Susana; Santos de Dios, Eugenio; Guerrero Arroyo, María del Carmen;

C3G mediated suppression of malignant transformation involves activation of PP2A phosphatases at the subcortical actin cytoskeleton

Abstract

In previous work, we demonstrated that C3G suppresses Ras oncogenic transformation by a mechanism involving inhibition of ERK phosphorylation. Here we present evidences indicating that this suppression mechanism is mediated, at least in part, by serine/threonine phosphatases of the PP2A family. Thus: (i) ectopic expression of C3G or C3GDeltaCat (mutant lacking the GEF activity) increases specific ERK-associated PP2A phosphatase activities; (ii) C3G and PP2A interact, as demonstrated by immunofluorescence and co-immunoprecipitation experiments; (iii) association between PP2A and MEK or ERK increases in C3G overexpressing cells; (iv) phosphorylated-inactive PP2A level decreases in C3G expressing clones and, most importantly, (v) okadaic acid reverts the inhibitory effect of C3G on ERK phosphorylation. Moreover, C3G interacts with Ksr-1, a scaffold protein of the Ras-ERK pathway that also associates with PP2A. The fraction of C3G involved in transformation suppression is restricted to the subcortical actin cytoskeleton where it interacts with actin. Furthermore, the association between C3G and PP2A remains stable even after cytoskeleton disruption with cytochalasin D, suggesting that the three proteins form a complex at this subcellular compartment. Finally, C3G- and C3GDeltaCat-mediated inhibition of ERK phosphorylation is reverted by incubation with cytochalasin D. We hypothesize that C3G triggers PP2A activation and binding to MEK and ERK at the subcortical actin cytoskeleton, thus favouring ERK dephosphorylation.

Keywords

MAP Kinase Kinase 1, Actins, Up-Regulation, Enzyme Activation, Mice, Protein Transport, Cell Transformation, Neoplastic, Catalytic Domain, NIH 3T3 Cells, Animals, Humans, Mutant Proteins, Protein Phosphatase 2, Phosphorylation, Extracellular Signal-Regulated MAP Kinases, Cytoskeleton, Guanine Nucleotide-Releasing Factor 2, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 41
    download downloads 100
  • 41
    views
    100
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
29
Top 10%
Average
Average
41
100
Green
bronze