Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEMS Yeast Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEMS Yeast Research
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Combined phylogenetic and neighbourhood analysis of the hexose transporters and glucose sensors in yeasts

Authors: Philippe Baret; Margarida Palma; Marie-Line Seret;

Combined phylogenetic and neighbourhood analysis of the hexose transporters and glucose sensors in yeasts

Abstract

The sugar porter family in yeasts encompasses a wide variety of transporters including the hexose transporters and glucose sensors. We analysed a total of 75 members from both groups in nine hemiascomycetous species, with complete and well-annotated genomes: Saccharomyces cerevisiae, Candida glabrata, Zygosaccharomyces rouxii, Kluyveromyces thermotolerans, Saccharomyces kluyverii, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii and Yarrowia lipolytica. We present a model for the evolution of the hexose transporters and glucose sensors, supported by two types of complementary evidences: phylogeny and neighbourhood analysis. Five lineages of evolution were identified and discussed according to different mechanisms of gene evolution: lineage A for HXT1, HXT3, HXT4, HXT5, HXT6 and HXT7; lineage B for HXT2 and HXT10; lineage C for HXT8; lineage D for HXT14; and lineage E for SNF3 and RGT2.

Keywords

Evolution, Molecular, Ascomycota, Monosaccharide Transport Proteins, Sequence Homology, Amino Acid, Yeasts, Cluster Analysis, Receptors, Cell Surface, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%
bronze