Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 1995 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Seizures and failures in the giant fiber pathway of Drosophila bang- sensitive paralytic mutants

Authors: P, Pavlidis; M A, Tanouye;

Seizures and failures in the giant fiber pathway of Drosophila bang- sensitive paralytic mutants

Abstract

Drosophila bang-sensitive paralytic mutants suffer from hyperactivity and paralysis following a mechanical shock; after recovery from paralysis, they cannot be paralyzed for a refractory period lasting up to 1 hr. Previously, we have shown that in easily shocked (eas), a typical bang-sensitive mutant, electrical shocks delivered to the brain cause seizure-like activity in the dorsal longitudinal flight motor neurons (DLMmns), and failure of giant fiber (GF) stimulation to evoke DLM potentials via the escape response pathway (Pavlidis et al., 1994). Here, we show that seizure and failure in the GF pathway with a refractory period is common to all six members of the bang-sensitive class. This syndrome was not found in any of eight other excitability mutants, including those affecting voltage-gated sodium or potassium- channel function. We show that failure occurs at the synapse between a peripherally synapsing interneuron (PSI) and the DLMmns, while the DLMmn-DLM neuromuscular junctions remain functional. Additionally, failure occurs in all other GF pathway-activated muscles. Failures occurred without seizures in the tergotrochanteral jump muscle (TTM), as was also found in approximately 10% of DLM tests, suggesting that seizures and failures may be independent events. This hypothesis is supported by the finding that, in double mutant combination with mlenapts, which suppresses behavioral bang sensitivity, DLM failures, but not seizures, were reduced.

Related Organizations
Keywords

Motor Neurons, Electroshock, Muscles, Brain, Synaptic Transmission, Drosophila melanogaster, Nerve Fibers, Phenotype, Seizures, Flight, Animal, Mutation, Neural Pathways, Animals, Paralysis, Genetic Predisposition to Disease

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    111
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
111
Top 10%
Top 10%
Average
hybrid